
92    communications of the acm    |   november 2011  |   vol.  54  |   no.  11

The fo llow in g pap er  combines two 
important themes in secure comput-
ing: assurance and information flow 
control. Assurance is evidence that a 
computer system is secure, that is, 
obeys its security specification, usu-
ally called a security policy. A system’s 
Trusted Computing Base (TCB) is all 
the parts that must work for the system 
to be secure. For high assurance, the 
TCB needs to be small and the policy 
simple. Flow control is one such policy; 
it specifies how information is allowed 
to move around in a system.

In the late 1960s the military began 
to worry about a “multilevel” computer 
system in which secrets leak from a 
user process handling classified data. 
It is impractical to require every appli-
cation program to come from a trusted 
source; databases, math libraries, and 
many other essential tools are too big 
and complicated to rebuild, or even 
to audit. So the secret process might 
contain a Trojan horse from the KGB, 
which leaks the secrets to Moscow via 
another, unclassified process. 

Flow control solves this problem by 
requiring that no action of a secret pro-
cess can affect the state of an unclassi-
fied one. Formally, it models the system 
as a state machine; the state is a set of 
variables (including process state such 
as the program counter), and every step 
sets some variables to functions of oth-
ers. So each step has the form

var1, … varn: = f1(args1), … , fn(argsn)

The only flows are from argsi to vari. 
Each variable v has a label L(v). La-

bels form a lattice, a partial order  in 
which any two elements have a least 
upper bound or max. The flow rule is 
that information can only flow from 
weaker (unclassified) labels to stronger 
(secret) ones, so each step must satisfy

maxv∈argsi L(v)  L(vari)

Typically a label is a set of atomic ele-
ments called categories, the ordering is 
set inclusion, and max is set union.

The flow rule is good because it 
composes: if each step obeys the rule, 
the whole computation does so. Hence 
the label on every data item is at least 
the max of the labels on everything that 
affected it; the rule is end to end. It is 
certainly simple, and assurance is just 
evidence that each step obeys it.

In the early 1980s research on flow 
led to the “Orange Book,” which de-
fines the security of a computer system 
by how well it implements flow control 
and how good its assurance is. The gov-
ernment said that it would require all 
multilevel systems to be secure in this 
sense, and several vendors developed 
them. Sadly, they all turned out to have 
rather large TCBs and to be slow, clumsy 
to use, and years behind less secure sys-
tems in functionality. The requirement 
was frequently waived, and it was finally 
abandoned. After this discouraging ex-
perience people lost interest in infor-
mation flow, especially since a personal 
computer is not usually multilevel. A 
networked computer is always multilev-
el, however, and today all computers are 
networked (though most adversaries 
are much weaker than the KGB).

Ten years ago Myers and Liskov2 
revived the field by pointing out that 
categories need not be predefined. 
Instead, any process can create a new 
category, which it owns. An owner can 
declassify a category, that is, remove 
it from a label. This is appealingly de-
centralized and Internet friendly, and 
makes it possible to isolate any pro-
gram by running it with a new category 
in its label and then declassifying the 
result; the flow rule ensures there are 
no other visible effects.

This paper describes HiStar, a sys-

tem that enforces decentralized infor-
mation flow directly. The variables are 
OS objects, files, threads, etc., rather 
than integers. Security depends on the 
simple flow control policy and a small 
TCB, a new 2,000 line kernel with six 
object types, each with just a few meth-
ods. This is much less than an existing 
code base retrofitted for strong secu-
rity. HiStar implements access control 
using control flow, the reverse of pre-
vious practice. Flows through shared 
resources, such as using up a resource 
or deleting an object, are tricky prob-
lems whose solutions add complexity. 
Containers enable sharing by holding 
hard links to objects. Unreachable ob-
jects are garbage collected, so there is 
no deletion. 

Unix applications run on a library 
OS1 that is not part of the TCB, using 
containers to represent directories, file 
descriptors, and other protected state. 
It’s surprising that such a minimal ker-
nel suffices, but similar results have 
recently been reported for Windows.3 
Isolation can clone a whole Unix; a 
container argument provides the envi-
ronment: the file system root, address 
space, resources, and so on. The clone 
can run most Unix programs, and it 
can’t affect anything outside of itself.

HiStar works well for tasks in which 
untrusted code reads sensitive data, 
such as setting up an SSL connection 
or running a virus scanner. It can iso-
late a lot of untrusted code using a little 
trusted code as a wrapper that decides 
how to declassify the results. The gen-
eral-purpose computing that failed in 
the 1980s has not been tried.

This is the latest step in the long 
and frustrating journey toward secure 
computing. It is a convincing solution 
for some serious practical problems. Of 
course the devil is in the details, which 
you can read about in the paper.	  

References  
1.	 Kaashoek, F. et al. Application performance and 

flexibility on exokernel systems. ACM Operating 
Systems Review 31, 5, (Dec. 1997), 52–65.

2.	M yers, A. and Liskov, B. Protecting privacy using the 
decentralized label model. Trans. Comput. Syst. 9, 4 
(Oct. 2000), 410–442.

3.	 Porter, D. et al. Rethinking the library OS from the  
top down. ACM SIGPLAN Notices 46, 3 (Mar. 2011), 
291–304. 

Butler Lampson (Butler.Lampson@microsoft.com) is a 
Technical Fellow at Microsoft Research and is a Fellow 
of ACM.

© 2011 ACM 0001-0782/11/11 $10.00 

Technical Perspective
Making Untrusted Code Useful 
By Butler Lampson

research highlights 

doi:10.1145/2018396.2018418

Security depends on 
the simple flow control 
policy and a small TCB.




