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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

Computer Security 
in the Real World

C omputer system security is more than 30
years old. It has had many intellectual suc-
cesses, among them the subject/object
access matrix model,1 access control lists,2

multilevel security using information
flow3,4 and the star property,5 public-key cryptog-
raphy,6 and cryptographic protocols.7 Despite these
successes, in an absolute sense the security of the
hundreds of millions of deployed computer systems
remains terrible. A determined and competent
attacker could steal or destroy most of the infor-
mation on most of these systems. Even worse, the
attacker could do this to millions of systems at once.

The Internet has made computer security much
more difficult. Twenty years ago, a computer sys-
tem had a few dozen users at most, all members of
the same organization. Today, half a billion people
all over the world connect to the Internet. Anyone
can attack your system. Your system, if compro-
mised, can infect others automatically. You face pos-
sibly hostile code that comes from many different
sources, often without your knowledge. Your lap-
top faces a hostile physical environment. If you own
content and want to sell it, you face hostile hosts.
You can’t just isolate yourself, because you may
want to share information with anyone or run code
from anywhere. 

These vulnerabilities invite vandalism: worms
and viruses. They also make it much easier to attack
a specific target, either to steal information or to
corrupt data. On the other hand, the actual harm
these attacks cause is limited, though increasing.
Unfortunately, there is no accurate data about the
cost of computer security failures: Most are never
made public for fear of embarrassment, but when
a public incident does occur, security experts and

vendors have every incentive to exaggerate its costs.  
Money talks, though. Many companies have

learned that although people may complain about
inadequate security, they won’t spend much money,
sacrifice many features, or put up with much incon-
venience to improve it. This strongly suggests that
bad security is not really costing them much.
Firewalls and antivirus programs are the only really
successful security products, and they are carefully
designed to require no end user setup and to inter-
fere very little with daily life.

The experience of the past few years confirms this
analysis. Virus attacks have increased, and people
are now more likely to buy a firewall and antivirus
software and to install patches that fix security
flaws. Vendors are making their systems more
secure, at some cost in backward compatibility and
user convenience. But the changes have not been
dramatic.

Many people have suggested that the PC mono-
culture makes security problems worse and that
more diversity would improve security. It’s true that
vandals can get more impressive results when most
systems have the same flaws. On the other hand, if
an organization installs several different systems
that all have access to the same critical data, as they
probably will, then a targeted attack only needs to
find a flaw in one of them to succeed.

WHAT IS SECURITY?
What do we want from secure computer systems?

Here is a reasonable goal: Computers are as secure
as real-world systems, and people believe it.

Most real-world systems are not very secure by
any absolute standard. It’s easy to break into some-
one’s house; in fact, in many places people don’t

Most computers are insecure because security is expensive. Security
depends on authentication, authorization, and auditing: the gold standard.
The key to uniform security in the Internet is the idea of one security 
principal speaking for another.
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even bother to lock their doors. It’s fairly easy
to steal something from a store. You need
very little technology to forge a credit card,
and it’s quite safe to use a forged card at least
a few times.

Why do people live with such poor security
in real-world systems? The reason is that real-
world security is not about perfect defenses
against determined attackers. Instead, it’s
about value, locks, and punishment. 

The bad guys balance the value of what they gain
against the risk of punishment, which is the cost of
punishment times the probability of getting pun-
ished. The main thing that makes real-world systems
sufficiently secure is that bad guys who do break in
are caught and punished often enough to make a life
of crime unattractive. The purpose of locks is not to
provide absolute security, but to prevent casual intru-
sion by raising the threshold for a break-in.

Well, what’s wrong with perfect defenses? The
answer is simple: They cost too much. There is a
good way to protect personal belongings against
determined attackers: Put them in a safe deposit
box. But these boxes are both expensive and incon-
venient. As a result, people use them only for things
that are seldom needed and either expensive or
hard to replace. 

Practical security balances the cost of protection
and the risk of loss, which is the cost of recovering
from a loss times its probability. Usually, the prob-
ability is fairly small (because the risk of punish-
ment is high enough), therefore the risk of loss is
also small. When the risk is less than the cost of
recovering, it’s better to accept it as a cost of doing
business, or a cost of daily living, than to pay for
better security. People and credit card companies
make these decisions every day.

WHAT IS COMPUTER SECURITY?
With computers, security is only a matter of soft-

ware, which is cheap to manufacture, never wears
out, and can’t be attacked with drills or explosives.
This makes it easy to drift into thinking that com-
puter security can be perfect, or nearly so. 

The fact that national security needs have domi-
nated work on computer security has made this prob-
lem worse. Because the stakes are much higher and
no police or courts are available to punish attackers,
not making mistakes is more important. Further,
computer security has been regarded as an offshoot
of communication security, which is based on cryp-
tography. Since cryptography can be nearly perfect,
it’s natural to think that computer security can be as
well. This reasoning ignores two critical facts.

First, software is complicated, and in practice it’s
impossible to make it perfect. Even worse, security
must be set up, and in a world of legacy hardware
and software, networked computers, mobile code,
and constantly changing relationships between
organizations, setup is complicated too. 

Second, security gets in the way of other things
you want. For software developers, security inter-
feres with features and with time to market. For
users and administrators, security interferes with
getting work done conveniently or, in some cases,
at all. This is more important, since there are more
users than developers. 

Security setup also takes time, and it contributes
nothing to useful output. Furthermore, no one
will notice that a setup is too permissive unless
there’s an audit or an attack. This leads to such
things as users whose password is their first name,
a company in which more than half of the
installed database servers have a blank adminis-
trator password, public access to databases of
credit card numbers,8,9 or e-mail clients that run
attachments containing arbitrary code with the
user’s privileges.10

The result should not be surprising. We don’t
have “real” security that guarantees to stop bad
things from happening, and the main reason is that
people don’t buy it. They don’t buy it because the
danger is small and because security is a pain. Since
the danger is small, people prefer to buy features.
A secure system must be implemented correctly.
This means that it takes more time to build, so nat-
urally it lacks the latest features. 

A secondary reason we don’t have “real” secu-
rity is that systems are complicated, therefore both
the code and the setup have bugs that an attacker
can exploit, such as buffer overruns or other flaws
that break the basic programming abstractions.
This is the reason that gets all the attention, but it
is not the heart of the problem.

Will things get better? Certainly, when security
flaws cause serious damage, buyers change their
priorities and systems become more secure, but
unless there’s a catastrophe, these changes are slow.
Short of that, the best we can do is to drastically
simplify the parts of systems that have to do with
security.

Studying a secure system involves three aspects: 

• Specification/Policy: What is the system sup-
posed to do?

• Implementation/Mechanism: How does it do
it?

• Correctness/Assurance: Does it really work?

Practical security
balances the 

cost of protection
and the risk 

of loss.



The first name for each aspect is the one in general
use throughout computing, while the second is the
special name used in the security world. 

POLICY: SPECIFYING SECURITY
Organizations and people that use computers can

describe their needs for information security under
four major headings:11

• Secrecy: controlling who gets to read infor-
mation.

• Integrity: controlling how information changes
or resources are used.

• Availability: providing prompt access to 
information and resources.

• Accountability: knowing who has had access
to information or resources.

Computer users are trying to protect some
resource against danger from an attacker. The
resource is usually either information or money.
The most important dangers are:

• Damage to information integrity
• Disruption of service availability
• Theft of money integrity
• Theft of information secrecy
• Loss of privacy secrecy

Each computer user must decide what security
means. A description of the user’s needs for security
is called a security policy.

Computer security policies usually derive from
policies for real-world security. The military is most
concerned with secrecy, ordinary businesses with
integrity and accountability, and telephone com-
panies with availability. Obviously, integrity is also
important for national security: An intruder should
not be able to change the sailing orders for a carrier,
cause the firing of a missile, or arm a nuclear
weapon. Secrecy is important in commercial appli-
cations as well: Financial and personnel informa-
tion must not be disclosed to outsiders. None-
theless, the difference in emphasis remains.12

A security policy has both a positive and a negative
aspect. It might say, “Company confidential infor-
mation should be accessible only to properly autho-
rized employees.” This means two things: Properly
authorized employees should have access to the infor-
mation, and other people should not have access. 

When people talk about security, the emphasis is
usually on the negative aspect: keeping out the bad
guys. In practice, however, the positive aspect gets
more attention, since too little access keeps people

from getting their work done, which draws
attention immediately. However, too much
access goes undetected until there’s a security
audit or an obvious attack, which rarely hap-
pens. This distinction between talk and prac-
tice pervades the security field.

MECHANISM: IMPLEMENTING SECURITY
One man’s policy is another man’s mech-

anism. Before a computer system can enforce
it, the informal access policy in the previous sec-
tion must be expanded to precisely describe both
the set of confidential information and the set of
properly authorized employees. We can view these
descriptions as more detailed policy or as imple-
mentation of the informal policy.

Security implementation has two parts: code and
setup. The code is the programs that security
depends on. The setup is all the data that controls
the programs’ operations: folder structure, access
control lists, group memberships, user passwords
or encryption keys, and so on.

A security implementation must defend against
vulnerabilities, which take three main forms: bad—
buggy or hostile—programs; bad—careless or hos-
tile—agents, either programs or people, giving bad
instructions to good but gullible programs; and bad
agents that tap or spoof communications. Careless
or hostile agents can cascade through several levels
of gullible agents. Clearly, agents that might get
instructions from bad agents must be prudent or
even paranoid rather than gullible. 

Broadly speaking, there are five defensive strate-
gies: 

• Isolate—keep everybody out. This coarse-
grained strategy provides the best security, but
it keeps users from sharing information or ser-
vices. This is impractical for all but a few appli-
cations.

• Exclude—keep the bad guys out. This medium-
grained strategy makes it all right for programs
inside this defense to be gullible. Code signing
and firewalls do this.

• Restrict—let the bad guys in, but keep them
from doing damage. This fine-grained strategy,
also known as sandboxing, can be imple-
mented traditionally with an operating system
process or with a more modern approach that
uses a Java virtual machine. Sandboxing typi-
cally involves access control on resources to
define the holes in the sandbox. Programs
accessible from the sandbox must be paranoid,
and it’s hard to get this right.
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Figure 1. Access
control model. A
guard controls
access to valuable
resources, deciding
whether the source
of the request,
called a principal, 
is allowed to do the
operation on the
object.

• Recover—undo the damage. This strategy,
exemplified by backup systems and restore
points, doesn’t help with secrecy, but it does
help with integrity and availability.

• Punish—catch the bad guys and prosecute
them. Auditing and police do this.

Figure 1 shows the well-known access control
model that provides the framework for these strate-
gies. In this model, requests for service arrive at
valuable resources, which usually are encapsulated
in objects. A guard decides whether the source of
the request, called a principal, is allowed to do the
operation on the object. 

To decide, the guard uses two kinds of informa-
tion: authentication information from the left,
which identifies the principal who made the
request, and authorization information from the
right, which states who is allowed to do what to
the object. The guard is separate from the object to
keep the guard simple and therefore more likely to
be correct.

Security is mainly up to the guard, but it still
depends on the object to implement its methods
correctly. For example, if a file’s read method
changes its data, or the write method fails to debit
the quota, or either one touches data in other files,
the system becomes insecure despite the guard. 

Another model, called information-flow control,
works better when secrecy in the face of bad pro-
grams is a primary concern.3,4 This is roughly a dual
of the access control model: The guard decides
whether information can flow to a principal.

In either model, there are three basic mechanisms
for implementing security. Together, they form the
gold standard for security because they all begin
with Au, the chemical symbol for gold:

• authenticating principals—determines who
made a request; principals usually are people,
but they also can be groups, channels, or pro-
grams;

• authorizing access—determines who is trusted
to do which operations on an object; and

• auditing the guard’s decisions—makes it possi-
ble to determine later what happened and why.

ASSURANCE: MAKING SECURITY WORK
Making security work requires establishing a

trusted computing base. The TCB is the collection
of hardware, software, and setup information on
which a system’s security depends. For example, if
the security policy for a LAN’s machines mandates
that they can access the Web but no other Internet
services, and no inward access is allowed, the TCB
is just the firewall that allows outgoing port 80 TCP
connections but no other traffic. If the policy also
states that no software downloaded from the
Internet should run, the TCB also includes the
browser code and settings that disable Java and
other software downloads.

The idea of a TCB is closely related to the end-
to-end principle—just as reliability depends only
on the ends, security depends only on the TCB.13

In both cases, performance and availability aren’t
guaranteed. Unfortunately, it’s hard to figure out
what is in the TCB for a given security policy. Even
writing the specs for the components is hard. 

Defense in depth through redundant security
mechanisms is a good way to make defects in the
TCB less harmful. For example, a system might
include

• network-level security, using a firewall;
• operating system or virtual machine security

that uses sandboxing to isolate programs; and
• application-level security that checks autho-

rization directly.

An attacker must find and exploit flaws in all the
levels. Defense in depth offers no guarantees, but it
does seem to help in practice.

Although most discussions of assurance focus on
the software, there is another important TCB com-
ponent: the setup or configuration information—
the knobs and switches that tell the software what
to do. In most systems deployed today there is a lot
of this information, including 

• what installed software has system or user
privileges—not just binaries, but anything exe-
cutable, such as shell scripts or macros; 

• the database of users, passwords, privileges,
and group memberships; services like SQL
servers often have their own user database;

• network information such as lists of trusted
machines; and 

• the access controls on all system resources:
files, devices, services.

Setup is much simpler than code, but it is still
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complicated and usually is done by less skilled peo-
ple. Worse, while code is written once, setup is dif-
ferent for every installation, and it is based on
documentation that is usually voluminous, obscure,
and incomplete. Therefore, we should expect that
the setup usually is wrong, and many studies con-
firm this. Ross Anderson14 gives an eye-opening
description of insecure setup in financial cryp-
tosystems, the National Research Council15 does
the same for the military, and Bruce Schneier16 gives
many other examples. 

To solve this problem, security setup must be
much simpler for both administrators and users.
They need a simple model for security with a small
number of settings. What form should this model
take? 

Users need a simple story with about three levels
of security—me, my group or company, and the
world—each with progressively less authority.
Browsers classify the network this way today. The
corresponding data should be in three separate
parts of the file system: my documents, shared doc-
uments, and public documents. This combines the
security of data with where it is stored, just as the
physical world does with safe deposit boxes.
Vendors or administrators should handle every-
thing else.

In particular, the system should classify all pro-
grams as trusted or untrusted based on how they
are signed, unless the user explicitly says otherwise.
It can either reject or sandbox untrusted programs.
Sandboxed programs must run in a completely sep-
arate world with a separate global state: user and
temporary folders, history, Web caches, and so on.
There should be no communication with the
trusted world except when the user explicitly copies
something by hand, or by network file sharing. This
is a bit inconvenient, but anything else is bound to
be unsafe.

Administrators still need a fairly simple story,
but even more they need the ability to handle many
users and systems uniformly because they can’t deal
effectively with numerous individual cases. The way
to do this is with security policies, rules for security
settings that are applied automatically to groups of
machines. These rules should say things like:

• Each user has read and write access to a home
folder on a server, and no one else has this
access.

• A user is normally a member of one work-
group, which has access to group home fold-
ers on all its members’ machines and on the
server.

• System folders must contain sets
of files that form a vendor-
approved release.

• A trusted authority must sign all
executable programs.

Since it’s too hard for most admin-
istrators to invent them from scratch,
such policies usually should be small
variations on templates that vendors
provide and test. Backward compatibility should
be off by default because administrators can’t deal
with its complex security issues.

Because some customers will insist on special
cases, it should be easy to report all the exceptions
from standard practice in a system, especially vari-
ations in the software on a machine, and all changes
from a previous set of exceptions. The reports
should be concise because long ones will surely be
ignored.

To make the policies manageable, administrators
must define groups of users and resources, then
state the policies in terms of these groups. Ideally,
resource groups follow the file system structure, but
the baroque conventions in existing networks, sys-
tems, and applications require other options as
well.

To handle repeating patterns of groups, system
architects can define roles, which are to groups as
classes are to objects in Java. Thus, each division
in a company might have roles for employees,
manager, finance, and marketing, and folders such
as budget and advertising plans. The manager and
finance roles have write access to budget and so
on. The Appliance division has a specific group for
Appliance-members, Appliance-budget, and so
forth; thus, Appliance-finance will have write
access to Appliance-budget.

The most practical way to implement policies is
to compile them into existing security settings,
treating the settings as a machine language. This
means that existing resource managers don’t have
to change. It also allows for both powerful high-
level policies and efficient enforcement, just as com-
pilers allow for both powerful programming
languages and efficient execution.

Developers also need help with security. A type-
safe virtual machine like Java or Microsoft’s .NET
framework will eliminate many bugs automatically.
Unfortunately, many security bugs are in system
software that talks to the network, and it will be a
while before developers write this code in a type-
safe world. Developers also need a process that
takes security seriously, values designs that make

While code is
written once, 

setup is different 
for every

installation.
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assurance easier, gets those designs reviewed
by security professionals, and refuses to ship
code with serious security flaws.

END-TO-END ACCESS CONTROL
Secure distributed systems need a way to

handle authentication and authorization uni-
formly throughout the Internet. Several
reports explain in detail how to do this,17-20

and they are the basis for recent Web services
security proposals.21

Local access control
Most existing systems, such as Unix and

Windows, do authentication and authorization
locally. They have local databases for user authenti-
cation—usually a password file—and for autho-
rization—usually an access control list (ACL) on
each resource. They rely on physical security or luck
to secure the channel to the user, or they use an
encrypted channel protocol like the Point-to-Point
Tunneling Protocol. Web server security works the
same way. Servers usually use Secure Socket Layer
(SSL) to secure the user channel. Each server farm
has a separate local user database.

A slight extension is to put each system into a
domain and store the authentication database cen-
trally on a domain controller. To log in a user, the
local system sends the controller a message that
includes the user’s password or challenge response.
The controller does exactly what the local system
used to do. Kerberos, Windows domains, and
Passport all work this way. To authenticate the user
to another system, the login system can ask the con-
troller to forward the authentication; Kerberos calls
this a ticket.22 Shared keys between machines
secure the communication. The entire domain is
under the same management.

Distributed access control
A distributed system can involve systems and

people that belong to different organizations and
are managed differently. Consider the following
example.

Alice, an Intel employee, belongs to a team
working on a joint Intel-Microsoft project called
Atom. She logs in, using a smart card to authenti-
cate herself, and uses SSL to connect to a project
Web page at Microsoft called Spectra. The Web
page grants her access according to a five-step
process:

1. The request comes over an SSL connection
secured with a session key KSSL. 

2. To authenticate the SSL connection, Alice’s
smart card uses her key KAlice to cryptographi-
cally sign a response to a challenge from the
Microsoft server.

3. Intel certifies that KAlice is the key for Alice@
Intel.com.

4. Microsoft’s group database says that Alice@
Intel.com is in the Atom@Microsoft group.

5. The ACL on the Spectra page says that Atom
has read/write access.

In this example many different kinds of infor-
mation contribute to the access control decision:
authenticated session keys, user passwords or pub-
lic keys, delegations from one system to another,
group memberships, and ACL entries. They are all
different cases of a single mechanism.

Chains of trust
A chain of trust runs from the SSL channel at

one end of the example to the Spectra resource at
the other. A link of this chain has the form
“Principal P speaks for principal Q about state-
ments in set T.” For example, KAlice speaks for
Alice@Intel about everything, and Atom@
Microsoft speaks for Spectra about read and write.

The idea of speaks for is that if P says some-
thing about T, then Q says it too—that is, P is
trusted as much as Q for statements in T. Put
another way, Q takes responsibility for anything
P says about T. The notion of principal is very
general, encompassing any entity that makes
statements. In the example, keys, people, groups,
systems, program images, and resource objects are
all principals.

The idea of “about subjects T” is that T is a way
to describe a set of things that P might say. We can
think of T as a pattern that characterizes these
statements. In the example, T is “all statements”
except for Step 5, where it is “read and write
requests.” It’s the object’s guard that decides
whether the request is in T, so different objects can
have different encodings for T. For example, for
file access, T could be “read and write requests for
files whose names match ~lampson/security/*
.doc.” SPKI develops this idea in some detail.17

We can abbreviate “P speaks for Q about T”
as P ⇒T Q, or just P ⇒ Q if T is “all statements.”
Here, ⇒ is short for “speaks for.” With this nota-
tion, the chain of trust for the example is: KSSL ⇒
KAlice ⇒ Alice@Intel ⇒ Atom@Microsoft ⇒r/w

Spectra.
Figure 2 shows how the chain of trust relates the

various principals. Note that the speaks-for arrows

Any problem in 
computer science

can be solved 
with another level 

of indirection.
—Wheeler
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are independent of the data flow: Trust flows clock-
wise around the loop, but no data traverses this
path. 

Evidence for the links
What establishes a link in the chain, that is, a fact

P ⇒ Q? Some verifier, either the object’s guard or
a later auditor, needs to see evidence for the link.
The evidence has the form “principal says delega-
tion,” where a delegation is a statement of the form
P ⇒T Q that delegates Q’s authority for T to P:
Anything that P says about T will be taken as some-
thing that Q says. 

The principal is taking responsibility for the del-
egation. So we must answer three questions.

Why trust the principal? We trust Q for P ⇒ Q, that
is, we believe it if Q says it. This delegation rule is
justified because Q, as a responsible adult or the
computer equivalent, should be allowed to dele-
gate its authority.

Who says? Second, we must establish how we
know that Q says P ⇒T Q. The answer depends on
how Q does the saying. If Q is a key, then “Q says
X” means that Q cryptographically signs X, some-
thing that a program can easily verify.6 This case
applies for KSSL ⇒ KAlice. If KAlice signs it, the verifier
believes that KAlice says it, and therefore trusts it by
the delegation rule. If, on the other hand, Q is the
verifier itself, then P ⇒T Q is probably just an entry
in a local database; this case applies for an ACL
entry like Atom ⇒ Spectra. The verifier believes its
own local data. These are the only ways the veri-
fier can directly know who said something: by
receiving it on a secure channel or by storing it
locally. 

To verify that any other principal says some-
thing, the verifier needs some reasoning about
“speaks for.” For a key binding like KAlice ⇒
Alice@Intel, the verifier needs a secure channel to
some principal that can speak for Alice@Intel. As
we shall see later, Intel ⇒delegate Alice@Intel, so it’s
enough for the verifier to see KAlice ⇒ Alice@Intel
on a secure channel from Intel.

Where does this channel come from? The sim-
plest way is for the verifier to store KIntel ⇒ Intel
locally. Then signing by the key KIntel forms the
secure channel. If Microsoft and Intel establish a
direct relationship, Microsoft will know Intel’s pub-
lic-key KIntel. We don’t want to install KIntel ⇒ Intel
explicitly on every Microsoft server, so we install it
in a Microsoft-wide directory MSDir. All the other
servers have secure channels to the directory and
trust it unconditionally to authenticate principals
outside Microsoft. We only need to install the pub-

lic-key KMSDir and the delegation “KMSDir ⇒ * except
*.Microsoft.com” in each server.

The remaining case is the group membership
Alice@Intel ⇒ Atom@Microsoft. Just as Intel

⇒delegate Alice@Intel, so Microsoft ⇒delegate Atom@
Microsoft. Therefore, Microsoft should make this
delegation.

Why is the principal willing? Third, we must know
why a principal should make a delegation. The rea-
sons vary greatly. Some facts are installed manu-
ally, such as KIntel ⇒ Intel at Microsoft, when the
companies establish a direct relationship. Others
follow from the properties of some algorithm. For
example, if a principal P runs a Diffie-Hellman key
exchange protocol that yields a fresh shared-key
KDH, and P doesn’t disclose KDH, then P should be
willing to say “KDH ⇒ P, provided you are on the
other end of a Diffie-Hellman run that yielded KDH,
you don’t disclose KDH to anyone else, and you
don’t use KDH to send any messages to yourself.”
In practice, P does this simply by signing KDH ⇒
KP; the qualifiers are implicit in running the Diffie-
Hellman protocol. 

Names
Why did we say that Intel ⇒delegate Alice@Intel?

Someone must speak for Alice@Intel unless we want
to install facts about it manually, which is tedious
and error prone. The parent of a name is the most
natural principal to delegate its authority. This is the
point of hierarchical naming: Parents have author-
ity over children. Formally, we have the axiom P

⇒delegate P/N for any principal P and simple name N;
Alice@Intel is just a variant syntax for Intel/Alice.

The simplest case is when P is a key. It is simple
because you don’t need to install anything to use
it. This means that every key is the root of a name
space. If K is a public key, it says Q ⇒ K/N by sign-
ing a certificate with this content. The certificate is
public, and anyone can verify the signature and
should then believe Q ⇒ K/N. 

Unfortunately, keys don’t have any meaning to
people. Usually we will want to know KIntel ⇒ Intel,
or something like that, so that if KIntel says “KAlice ⇒
Alice@Intel” we can believe it. As always, one way
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Figure 2. Chain of
trust. The chain
relates the various
principals: Trust
flows clockwise
around the loop, but
data flows on KSSL

from Alice’s login 
system to Spectra.
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to establish this is to install KIntel ⇒ Intel
manually, a direct relationship with Intel.
Another way uses hierarchical naming at the
next level up—we believe that KIntel ⇒
Intel.com because Kcom says it and we know
Kcom ⇒ com. Taking one more step, we get to
the root of the DNS hierarchy; secure DNS23

would let us take these steps if it were ever
deployed. Indeed, this is exactly what
browsers do when they trust Verisign to
authenticate a Web server’s DNS name. 

This puts a lot of trust in Verisign or the DNS
root, however, and if tight security is needed, peo-
ple will prefer to establish direct relationships like
the Intel-Microsoft one. Why not always have
direct relationships? They are a nuisance to manage
because each one requires exchanging a key man-
ually and making some provisions for changing the
key in case it’s compromised. 

Authenticating systems
We can treat a program image, represented by its

secure hash, as a principal; the hash plays the same
role as an encryption key. But a program can’t make
statements. To do so, it must be loaded by a host H.
Booting an operating system is a special case of
loading. A loaded program depends on the host it
runs on. If you don’t trust the host, you certainly
shouldn’t trust the running program. 

There are four steps in authenticating a system S
running on a host H:

1. H needs to know something about the program
image, preferably a cryptographically secure
hash or digest DSQL of the image. If H runs the
image with digest DSQL as S, then S ⇒ DSQL.

2. A digest, however, has the same drawback as a
key: It’s not meaningful to a person. So, just as
we bind a key to a user name with KIntel says
KAlice ⇒ Alice@Intel, we bind a digest to a 
program name with KMicrosoft says DSQL ⇒
Microsoft/SQLServer. Now we have S ⇒ DSQL

⇒ SQLServer. The host also can have an ACL
of programs that it’s willing to run, perhaps just
Microsoft/SQLServer, perhaps Microsoft/*.

3. The host must authenticate a channel from S to
the rest of the world. The simplest way to do
this is to make up a key pair (KS, KS

-1), give S
the private key KS

-1, and authenticate the pub-
lic key KS with H says KS ⇒ SQLServer. Now KS

is the channel.
4. A third party won’t believe this, however, unless

it trusts H to run SQLServer. So a third party
needs to know H  ⇒delegate SQLServer. 

There are four principals here: the executable file,
the digest DSQL, the running SQL server S, and the
channel KS to S. The chain of trust is KS ⇒ S ⇒ DSQL

⇒ SQLServer.
The Next-Generation Secure Computing Base

system24 is one way to implement these ideas.
NGSCB aims to provide a way to run newly writ-
ten software on a PC with fairly high confidence
that a malicious intruder doesn’t corrupt its exe-
cution. Since existing operating systems are too
complicated to provide such confidence, the first
step is to provide what amounts to a physically sep-
arate machine: Hardware mechanisms keep this
machine isolated from the main OS. This separate
machine runs a new software stack, whose base is
a small virtual machine monitor called a nexus or
hypervisor. More hardware stores a private-key KM

for the machine and uses this key to sign a certifi-
cate for the hypervisor: KM says Khypervisor ⇒ Dhypervisor.
In addition, the machine uses its private key to
encrypt data on behalf of the hypervisor, which it
will decrypt only for a program with the same
digest. The hypervisor in turn loads applications
and provides the same services for them, just like
any other operating system.

Variations
A chain of trust can vary in many details, includ-

ing how to implement secure channels, how to
store and transmit bytes, who collects the evidence,
whether to summarize evidence, how expressive T
is, and what compound principals exist other than
names. Encryption is the usual way to implement
a secure channel. Martin Abadi and Roger
Needham7 explain how to do it properly and give
references to the existing literature.

Handling bytes. In analyzing security, it’s impor-
tant to separate the secure channels—usually rec-
ognizable by encryption at one end and decryption
at the other—from ordinary channels. The latter
don’t affect security, so we can choose the flow and
storage of encrypted bytes to optimize simplicity,
performance, or availability. The most important
choice is between public-key and shared-key
encryption.

Public-key encryption allows a secure offline
broadcast channel. You can write a certificate on
a tightly secured offline system, then store it in an
untrusted system so that any number of readers
can fetch and verify it. Doing broadcast with
shared keys requires a trusted online relay. There’s
nothing wrong with this in principle, but it may
be hard to make it both secure and highly avail-
able.

If you don’t 
trust the host,
you certainly

shouldn’t trust 
the running 
program.
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Contrary to popular belief, there’s nothing magic
about public-key certificates. The best way to think
of them is as secure answers to predetermined
queries. You can get the same effect by querying an
online database as long as you trust the database
server and the secure channel to it. Kerberos works
this way.22

Caching is another aspect of information stor-
age. It can greatly improve performance, and it
doesn’t affect security or availability as long as
there’s always a way to reload the cache if gets
cleared or invalidated. This last point is often over-
looked.

Collecting evidence. The verifier needs to see the evi-
dence from each link in the chain of trust. In the
push approach, the client gathers the evidence and
hands it to the object. In the pull approach, the
object queries the client and other databases to col-
lect the evidence it needs.

Most systems use push for authentication and
pull for authorization. Security tokens in Windows
are an example of push, access control lists are an
example of pull. Push may require the object to tell
the client what sort of evidence it needs.17,18

If the client is feeble, or if some authentication
information such as group memberships is stored
near the object, more pull may be good. Cross-
domain authentication in Windows is an example:
The target domain controller, rather than the login
controller, discovers membership in groups local to
the target domain.

Summarizing evidence. It’s possible to replace sev-
eral links of a chain like P ⇒ Q ⇒ R with a single
link P ⇒ R signed by someone who speaks for R.
In the limit, the object signs a link that summarizes
the whole chain; this is usually called a capability.
An open file descriptor is a familiar example that
summarizes the access rights of a process to a file,
which are checked when the process opens the file.
Capabilities save space and time to verify, which
are especially important for feeble objects such as
computers embedded in small devices, at the
expense of more complicated setup and revocation
of access.

Expressing sets of statements. Traditionally, an
object groups its methods into a few sets, such as
read, write, and execute operations on files. ACLs
hold permissions for these sets, but other delega-
tions are unlimited. SPKI17 uses tags to define sets
of statements and can express unions and intersec-
tions of sets in any delegation so that we can say
things like “Alice ⇒ Atom for reads of files named
*.doc and purchase orders less than $5,000.” 

Compound principals. Names are compound prin-

cipals; other examples are conjunctions and
disjunctions.19 Conjunctions such as Alice
and Bob consist of two principals, and the
conjunction makes a statement only if both
of them make it. This is very important for
commercial security, where it’s called “sep-
aration of duty” and is intended to make
insider fraud harder by forcing two insiders
to collude. 

Disjunctions such as Alice or Flaky-
Program also consist of two principals. An
object must grant access to both for the disjunction
to get it. In Windows, this is a restricted token that
makes it safer for Alice to run a flaky program,
because a process with this identity can only touch
objects that explicitly grant access to FlakyProgram,
not all the objects that Alice can access.

Auditing
In addition to implementing end-to-end access

control, the chain of trust also collects in one place,
in an explicit form, all the evidence and rules that
go into making an access control decision. This
data serves as a proof for the decision. 

If the guard records the proof in a reasonably
tamper-resistant log, an auditor can review it later
to establish accountability or to determine whether
the system granted some unintended access and
why. Since detection and punishment are the pri-
mary instruments of practical security, this is
extremely important.

M ost computers today are insecure because
security is costly in terms of user inconve-
nience and foregone features, and people

are unwilling to pay the price. Real-world security
depends more on punishment than on locks, but
it’s hard to even find network attackers, much less
punish them. The basic elements of security are
authentication, authorization, and auditing: the
gold standard. The idea of one principal speaking
for another is the key to doing these uniformly
across the Internet.

In the future, type-safe programming systems
such as Java or Microsoft’s .NET framework and
more careful attention to secure programming will
continue to reduce low-level security bugs. Setting
up security is still much too complicated for ordi-
nary users, but this too is gradually improving.

Fundamentally, better security requires punish-
ing malefactors. This is not mainly a matter of laws,
but of being able to track them down. To make that
possible, anything that tries to enter your computer

The chain of trust
collects all the 

evidence and rules
that go into making
an access control

decision.
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should be rejected unless it comes from a real-world
source that you can hold accountable. The Internet
is likely to evolve in this direction. ■
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