
Theoretical Computer Science 243 (2000) 35–91
www.elsevier.com/locate/tcs

Fundamental Study

Revisiting the PAXOS algorithm(

Roberto De Priscoa ;∗, Butler Lampsonb, Nancy Lyncha

aMIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA
bMicrosoft Corporation, 180 Lake View Ave, Cambridge, MA 02138, USA

Received October 1998; revised July 1999
Communicated by M. Mavronicolas

Abstract

The PAXOS algorithm is an e�cient and highly fault-tolerant algorithm, devised by Lamport,
for reaching consensus in a distributed system. Although it appears to be practical, it seems
to be not widely known or understood. This paper contains a new presentation of the PAXOS

algorithm, based on a formal decomposition into several interacting components. It also contains
a correctness proof and a time performance and fault-tolerance analysis. The formal framework
used for the presentation of the algorithm is provided by the Clock General Timed Automaton
(Clock GTA) model. The Clock GTA provides a systematic way of describing timing-based
systems in which there is a notion of “normal” timing behavior, but that do not necessarily
always exhibit this “normal” timing behavior. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: I=O automata models; Formal veri�cation; Distributed consensus;
Partially synchronous systems; Fault-tolerance

Contents

1. Introduction : 36
1.1. Related work :38
1.2. Road map : 39

2. Models : 39
2.1. I=O automata and the GTA :39
2.2. The Clock GTA : 40
2.3. Composition of automata : 42

(A preliminary version of this paper appeared in Proceedings of the 11th International Workshop on
Distributed Algorithms, Saarbr�ucken, Germany, September 1997, Lecture Notes in Computer Science, Vol.
1320, 1997, pp. 111–125. The �rst author is on leave from the Dipartimento di Informatica ed Applicazioni,
Universit�a di Salerno, 84081 Baronissi (SA), Italy.

∗ Corresponding author.
E-mail addresses: robdep@theory.lcs.mit.edu (R. De Prisco), blampson@microsoft.com (B. Lampson),
lynch@theory.lcs.mit.edu (N. Lynch).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00042 -6

36 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

3. The distributed setting : 43
3.1. Processes :44
3.2. Channels : 44
3.3. Distributed systems : 45

4. The consensus problem : 46
5. Failure detector and leader elector : 47
5.1. A failure detector : 47
5.2. A leader elector :49

6. The PAXOS algorithm : 52
6.1. Overview :52
6.2. Automaton BASICPAXOS : 54
6.3. Automaton SPAX : 80
6.4. Correctness and analysis of SPAX : 81
6.5. Messages :86
6.6. Concluding remarks :86

7. The MULTIPAXOS algorithm : 87
8. Application to data replication :88
9. Conclusion : 89
Acknowledgement :89
References : 89

1. Introduction

Reaching consensus is a fundamental problem in distributed systems. Given a dis-
tributed system in which each process starts with an initial value, to solve a consensus
problem means to give a distributed algorithm that enables each process to eventually
output a value of the same type as the input values, in such a way that three conditions,
called agreement, validity and termination, hold. There are di�erent de�nitions of the
problem depending on what these conditions require. Distributed consensus has been
extensively studied. A good survey of early results is provided in [13]. We refer the
reader to [24] for a more recent treatment of consensus problems.
Real distributed systems are often partially synchronous systems subject to process,

channel and timing failures and process recoveries. In a partially synchronous dis-
tributed system, processes take actions within ‘ time and messages are delivered within
d time, for given constants ‘ and d. However, these time bounds hold when the system
exhibits a “normal” timing behavior. Hence the above-mentioned bounds of ‘ and d
can be occasionally violated (timing failures). Processes may stop and recover; it is
possible to keep the state of a process, or part of it, in a stable storage so that the state,
or part of it, survives the failure. Messages can be lost, duplicated or reordered. Any
practical consensus algorithm needs to consider the above practical setting. Moreover,
the basic safety properties must not be a�ected by the occurrence of failures. Also, the
performance of the algorithm must be good when there are no failures, while when
failures occur, it is reasonable to not expect e�ciency.
Lamport’s PAXOS algorithm [19] meets these requirements. The model considered is

a partially synchronous distributed system where each process has a direct communi-
cation channel with each other process. The failures allowed are timing failures, loss,

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 37

duplication and reordering of messages, and process stopping failures. Process recov-
eries are allowed; some stable storage is needed. PAXOS is guaranteed to work safely,
that is, to satisfy agreement and validity, regardless of process, channel and timing
failures and process recoveries. When the distributed system stabilizes, meaning that
there are no failures, nor process recoveries, and a majority of the processes are not
stopped, for a su�ciently long time, termination is also achieved and the performance
of the algorithm is good. Hence PAXOS has good fault-tolerance properties and when
the system is stable it combines those fault-tolerance properties with the performance
of an e�cient algorithm, so that it can be useful in practice. In the original paper [19],
the PAXOS algorithm is described as the result of discoveries of archaeological studies
of an ancient Greek civilization. That paper contains also a proof of correctness and
a discussion of the performance analysis. The style used for the description of the
algorithm often diverts the reader’s attention. Because of this, we found the paper hard
to understand and we suspect that others did as well. Indeed the PAXOS algorithm, even
though it appears to be a practical and elegant algorithm, seems not widely known or
understood.
In [19] a variation of PAXOS that considers multiple concurrent runs of PAXOS for

reaching consensus on a sequence of values is also presented. We call this variation
the MULTIPAXOS algorithm. 1

This paper contains a new, detailed presentation of the PAXOS algorithm, based on a
formal decomposition into several interacting components. It also contains a correctness
proof and a time performance and fault-tolerance analysis. The MULTIPAXOS algorithm is
also described, together with an application to data replication. The formal framework
used for the presentation is provided by the Clock General Timed Automaton (Clock
GTA), which has been developed in [5]. The Clock GTA is a special type of Lynch
and Vaandrager’s General Timed Automaton (GTA) model [26–28]. The Clock GTA
uses the timing mechanisms of the GTA to provide a systematic way of describing both
the normal and the abnormal timing behaviors of a partially synchronous distributed
system subject to timing failures. The model is intended to be used for performance
and fault-tolerance analysis of practical distributed systems based upon the stabilization
of the system.
The correctness proof uses automata composition and invariant assertion methods.

Automata composition is useful for representing a system using separate components.
We provide a modular presentation of the PAXOS algorithm, obtained by decomposing
it into several components. Each one of these components copes with a speci�c aspect
of the problem. In particular there is a “failure detector” module that detects process
failures and recoveries. There is a “leader elector” module that copes with the problem
of electing a leader; processes elected leaders by this module, are used as leaders

1 PAXOS is the name of the ancient civilization studied in [19]. The actual algorithm is called the “single-
decree synod” protocol and its variation for multiple consensus is called the “multi-decree parliament”
protocol. We use the name PAXOS for the single-decree protocol and the name MULTIPAXOS for the multi-
decree parliament protocol.

38 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

in PAXOS. The PAXOS algorithm is then split into a basic part that ensures agreement
and validity and into an additional part that ensures termination when the system stabi-
lizes; the basic part of the algorithm, for the sake of clarity of presentation, is further
subdivided into three components. The correctness of each piece is proved by means
of invariants, i.e., properties of system states which are always true in any execution.
The time performance and fault-tolerance analysis is conditional on the stabilization

of the system behavior starting from some point in an execution. Using the Clock GTA
we prove that when the system stabilizes PAXOS reaches consensus in O(1) time and
uses O(n) messages, where n is the number of processes. We also brie
y discuss the
MULTIPAXOS protocol and a data replication algorithm which uses MULTIPAXOS. With MUL-
TIPAXOS the high availability of the replicated data is combined with high fault tolerance.

1.1. Related work

The consensus algorithms of Dwork et al. [9] and of Chandra and Toueg [2] bear
some similarities with PAXOS. The algorithm of [9] also uses “rounds” conducted by a
leader, but the strategy used in each round is di�erent from the one used by PAXOS.
Also, [9] does not consider process restarts. The time analysis provided in [9] is condi-
tional on a “global stabilization time” after which process response times and message
delivery times satisfy the time assumptions. This is similar to our stabilized analysis.
A similar time analysis, applied to the problem of reliable group communication, can
be found in [12].
The algorithm of Chandra and Toueg is based on the idea of an abstract failure

detector [2]. It turns out that failure detectors provide an abstract and modular way
of incorporating partial synchrony assumptions in the model of computation. A �P
failure detector incorporates the partial synchrony considered in this paper. One of
the algorithms in [2] uses a �S failure detector, which is weaker than a �P failure
detector. This algorithm is based on the rotating coordinator paradigm and as PAXOS uses
majorities to achieve consistency. However it takes, in the worst case, longer time than
PAXOS to achieve termination. Chandra et al. [1] identi�ed the “weakest” failure detector
that can be used to solve the consensus problem. This weakest failure detector is �W
and it is equivalent to �S. The Chandra and Toueg algorithm does not consider channel
failures (however, it can be modi�ed to work with loss of messages but the resulting
algorithm is less e�cient than PAXOS with respect to the number of messages sent).
The failure detector provided in this paper di�ers from those classi�ed by Chandra

and Toueg in that it provides reliability conditional on the system stabilization. If the
system eventually stabilizes then our failure detector can be classi�ed in the class of
the eventually perfect failure detectors. However it should be noted that in order for
PAXOS to achieve termination it is not needed that the system become stable forever
but only for a su�ciently long time.
Dolev et al. [8] have adapted the Chandra and Toueg’s de�nition of failure detector

to consider also omission failures and have given a distributed consensus protocol that
allows majorities to achieve consensus.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 39

MULTIPAXOS can be easily used to implement a data replication algorithm. The data
replication algorithms in [23, 30, 17, 22] are based on ideas similar to the ones used in
PAXOS.
PAXOS bears some similarities with the three-phase commit protocol [34]. However,

the three-phase commit protocol does not always guarantee majorities to progress. The
commit algorithm of Keidar and Dolev [18] is similar to PAXOS in that it always guar-
antees majorities to progress. Also, PAXOS is more e�cient than the three-phase commit
protocol when the system is stable and consensus has to be reached on a sequence of
values (a three-phase protocol is needed only for the �rst consensus problem, while all
the subsequent ones can be solved with a two-phase exchange of messages).
Cristian’s timed asynchronous model [4] is similar to the distributed setting consid-

ered in this paper. It assumes, however, a bounded clock drift even when the system
is unstable. Our model is weaker in the sense that makes no assumption on clock drift
when the system is unstable. The Clock GTA provides a formal way of modelling
the stability property of the timed asynchronous model. In [31] Patt-Shamir introduces
a special type of GTA used for the clock synchronization problem. The Clock GTA
considers only the local time; our goal is to model good timing behavior starting from
some point on and thus we are not concerned with synchronization of the local clocks.
In [20] Lampson provides a brief overview of the PAXOS algorithm together with

key ideas for proving the correctness of the algorithm. We used these ideas in the
correctness proof provided in this paper.

1.2. Road map

Section 2 describes the I=O automaton models used and Section 3 describes the
distributed system considered. Section 4 gives a formal de�nition of the consensus
problem. In Section 5 a failure detector and a leader elector are presented; they are
used by the PAXOS algorithm. The PAXOS algorithm itself is described and analyzed
in Section 6. Section 7 describes MULTIPAXOS and Section 8 discusses how to use
MULTIPAXOS to implement a data replication algorithm.

2. Models

Our formal framework is provided by I=O automaton models, speci�cally by the
Clock GTA model developed in [5]. In this section we brie
y describe essential notions
about I=O automata needed to read the rest of the paper. We refer the interested reader
to [24, Chapters 8 and 23] for more information and references about I=O automaton
models, and to [5] for a more detailed presentation of the Clock GTA model.

2.1. I=O automata and the GTA

The I=O automata models are formal models suitable for describing asynchronous
and partially synchronous distributed systems. An I=O automaton is a simple type of

40 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

state machine in which transitions are associated with named actions. These actions
are classi�ed into categories, namely input, output, internal and, for the timed models,
time-passage. Input and output actions are used for communication with the external
environment, while internal actions are local to the automaton. The time-passage actions
are intended to model the passage of time. The input actions are assumed not to
be under the control of the automaton, that is, they are controlled by the external
environment, which can force the automaton to execute the input actions. Internal
and output actions are controlled by the automaton. The time-passage actions are also
controlled by the automaton (though this may at �rst seem somewhat strange, it is
just a formal way of modelling the fact that the automaton must perform some action
before some amount of time elapses).
The General Timed Automaton (GTA) uses time-passage actions called �(t), t ∈R+

to model the passage of time. The time-passage action �(t) represents the passage of
time by the amount t.
A GTA consists of four components: (i) the signature, consisting of four disjoint

sets of actions, namely, the input, output, internal and time-passage actions; (ii) the
set of states; (iii) the set of initial states, which is a nonempty subset of the set of
states; (iv) the state-transition relation, which speci�es all the possible state to state
transitions.
A state-to-state transition, usually called a step, is a triple (s; �; s′) where s and s′

are states of the automaton and � is an action that takes the automaton from s to s′.
If for a particular state s and action �, there is some transition of the form (s; �; s′),
then we say that � is enabled in s. Input actions are enabled in every state.
A timed execution fragment of a GTA is de�ned to be either a �nite sequence

� = s0; �1; s1; �2; : : : ; �r ; sr or an in�nite sequence � = s0; �1; s1; �2; : : : ; �r ; sr ; : : :, where
the s’s are states, the �’s are actions (either input, output, internal, or time-passage),
and (sk ; �k+1; sk+1) is a step for every k. Note that if the sequence is �nite, it must end
with a state. The length of a �nite execution fragment � = s0; �1; s1; �2; : : : ; �r; sr is r.
A timed execution fragment beginning with a start state is called a timed execution. If
� is any timed execution fragment and �r is any action in �, then we say that the time
of occurrence of �r is the sum of all the reals in the time-passage actions preceding
�r in �. A timed execution fragment � is said to be admissible if the sum of all the
reals in the time-passage actions in � is ∞. A state is said to be reachable if it is the
�nal state of a �nite timed execution of the GTA.
In the rest of the paper we will often refer to timed executions (resp. timed execution

fragments) simply as executions (resp. execution fragments).

2.2. The Clock GTA

A Clock GTA is a GTA with a special component included in the state; this special
variable is called Clock and it can assume values in R. The purpose of Clock is to
model the local clock of the process. The only actions that are allowed to modify
Clock are the time-passage actions �(t). When a time-passage action �(t) is executed

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 41

by the automaton, the Clock is incremented by an amount of time t′¿0 independent
of the amount t of time speci�ed by the time-passage action. 2 Since the occurrence of
the time-passage action �(t) represents the passage of (real) time by the amount t, by
incrementing the local variable Clock by an amount t′ di�erent from t we are able to
model the passage of (local) time by the amount t′. As a special case, we have some
time-passage actions in which t′= t; in these cases the local clock of the process is
running at the speed of real time.
In the following and in the rest of the paper, we use the notation s :x to denote the

value of state component x in state s.

De�nition 2.1. A step (sk−1; �(t); sk) of a Clock GTA is called regular if sk :Clock −
sk−1:Clock= t; it is called irregular if it is not regular.

That is, a time-passage step executing action �(t) is regular if it increases Clock
by t′= t. In a regular time-passage step, the local clock is increased by the same
amount as the real time, whereas in an irregular time-passage step �(t) that represents
the passage of real time by the amount t, the local clock is increased either by t′¡t
(the local clock is slower than the real time) or by t′¿t (the local clock is faster than
the real time).

De�nition 2.2. A timed execution fragment � of a Clock GTA is called regular if all
the time-passage steps of � are regular. It is called irregular if it is not regular, i.e., if
at least one of its time-passage step is irregular.

In a partially synchronous distributed system processes are expected to respond and
messages are expected to be delivered within given time bounds. A timing failure is a
violation of these time bounds. An irregular time-passage step can model the occurrence
of a timing failure. We remark that a timing failure can actually be either an upper
bound violation (a process or a channel is slower than expected) or a lower bound
violation (a process or a channel is faster than expected). Obviously, in a regular
execution fragment there are no timing failures.
Though we have de�ned a regular execution fragment so that it does not contain

any of the timing failures, we remark that for the the scope of this paper we actually
need only that the former type of timing failures (upper bound) does not happen. That
is, for the scope of this paper, we could have de�ned a regular step �(t) as one that
increases the clock time by an amount t′, t′¿t.

2.2.1. Using MMTAs to describe Clock GTAs
GTAs encode timing restrictions explicitly into the code of the automata. This pro-

vides a lot of
exibility but requires more complicated code to explicitly handle the

2 Formally, we have that if (s; �(t); s′) is a step then also (s; �(t̃); s′), for any t̃¿0, is a step. Hence a
Clock GTA cannot keep track of the real time.

42 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

time and the time bounds. In many situations however we do not need such a
exibility
and we only need to specify simple time bounds (e.g., an enabled action is executed
within ‘ time). The MMTA 3 model is a subclass of the GTA model suitable for
describing such simple time bounds. The MMTA does not have time-passage actions
but each action is coupled with its time of execution so that the execution of an MMTA
is a (not necessarily �nite) sequence �= s0, (�1; t1), s1, (�2; t2); : : : ; (�r; tr), sr; : : :, where
the s’s are states, the �’s are actions, and the t’s are times in R¿0. To specify the time
bounds an MMTA has a �fth component (with respect to the four components of a
GTA) called task partition, which is an equivalence relation on the locally controlled
actions (i.e., internal and output action). Each equivalence class is called a task of
the automaton. A task C having at least one enabled action is said enabled. Each task
C has a lower bound, lower(C), and an upper bound upper(C), on the time that can
elapse before an enabled action belonging to the task C is executed. If the task is not
enabled then there is no restriction.
There is a standard technique that transforms any MMTA into a GTA (see [24, Sec-

tion 23:1]). This technique can be extended to transform any MMTA into a Clock
GTA (see [5]). In the rest of the paper we will sometimes use MMTAs to de-
scribe Clock GTAs and when using MMTAs we will always use lower(C)= 0 and
upper(C)= ‘. The following lemma [5] holds.

Lemma 1. Consider a regular execution fragment � of a Clock GTA described with
the MMTA model; starting from a reachable state s0 and lasting for more than
‘ time. Then (i) any task C enabled in s0 either has a step or is disabled within
‘ time; and (ii) any new enabling of C has a subsequent step or disabling within ‘
time; provided that � lasts for more than ‘ time from the enabling of C.

2.3. Composition of automata

The composition operation allows an automaton representing a complex system to be
constructed by composing automata representing simpler system components. The most
important characteristic of the composition of automata is that properties of isolated
system components still hold when those isolated components are composed with other
components. The composition identi�es actions with the same name in di�erent com-
ponent automata. When any component automaton performs a step involving action �,
so do all component automata that have � in their signatures. Since internal actions of
an automaton A are intended to be unobservable by any other automaton B, automaton
A cannot be composed with automaton B unless the internal actions of A are disjoint
from the actions of B. (Otherwise, A’s performance of an internal action could force
B to take a step.) Moreover, A and B cannot be composed unless the sets of output
actions of A and B are disjoint. (Otherwise two automata would have the control of an

3 The name MMT derives from Merritt, Modugno, and Tuttle who introduced this automaton [29].

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 43

output action.) When A and B can be composed we say that they are compatible.
The transitions of the composition are obtained by allowing all the components that
have a particular action � in their signature to participate, simultaneously, in steps
involving �, while all the other components do nothing. Note that this implies that
all the components participate in time-passage steps, with the same amount of time
passing for all of them.
For a formal de�nition of the composition operation we refer the reader to [24,

Section 23:2:3]. Here we recall the following theorems.

Theorem 2. The composition of a compatible collection of GTAs is a GTA.

Given the execution �= s0; �1; s1; : : : ; of a GTA A obtained by composing a compat-
ible collection {Ai}i∈I of GTAs, the notation �|Ai denotes the sequence obtained from
� by deleting each pair �r; sr for which �r is not action of Ai and by replacing each
remaining sr by (sr)i, that is, automaton Ai’s piece of sr .

Theorem 3. Let {Ai}i∈I be a compatible collection of GTAs and let A be the com-
position of Ai; for all i∈ I . If � is an execution of A; then �|Ai is an execution of Ai;
for every i∈ I .

The above theorem is important because it enables us to claim that properties proven
to be true for a particular automaton A are still true for a bigger automaton obtained
by composing automaton A with other automata. We will make extensive use of this
theorem in the rest of the paper.
Clock GTAs are GTAs; hence, they can be composed as GTAs are composed. How-

ever we point out that the composition of Clock GTAs does not yield a Clock GTA
but a GTA.

3. The distributed setting

In this section we discuss the distributed setting. We consider a partially synchronous
distributed system consisting of n processes. The distributed system provides a bidi-
rectional channel for every two processes. Each process is uniquely identi�ed by its
identi�er i∈I, where I is a totally ordered �nite set of n identi�ers. The set I is
known by all the processes. Moreover each process of the system has a local clock.
Local clocks can run at di�erent speeds, though in general we expect them to run at the
same speed as real time. We assume that a local clock is available also for channels;
though this may seem somewhat strange, it is just a formal way to express the fact
that a channel is able to deliver a given message within a �xed amount of time, by
relying on some timing mechanism (which we model with the local clock). We use
Clock GTAs to model both processes and channels.
Throughout the rest of the paper we use two constants, ‘ and d, to represent upper

bounds on the time needed to execute an enabled action and to deliver a message,

44 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

respectively. These time bounds do not necessarily hold for every action and message
in every execution; a violation of these bounds is a timing failure.

3.1. Processes

We allow process stopping failures and recoveries, and timing failures. To formally
model process stops and recoveries we model process i with a Clock GTA which has
a special state component called Statusi and two input actions Stopi and Recoveri. The
state variable Statusi re
ects the current condition of process i. The e�ect of action
Stopi is to set Statusi to stopped, while the e�ect of Recoveri is to set Statusi to
alive. Moreover when Statusi= stopped, all the locally controlled actions are not
enabled and the input actions have no e�ect, except for action Recoveri. We say that
a process i is alive (resp. stopped) in a given state s if we have s :Statusi= alive

(resp. s :Statusi= stopped). We say that a process i is alive (resp. stopped) in a given
execution fragment, if it is alive (resp. stopped) in all the states of the execution
fragment. An automaton modelling a process is called a process automaton.
Between a failure and a recovery a process does not lose its state. We remark that

PAXOS needs only a small amount of stable storage (see Section 6.6); however, for
simplicity, we assume that the entire state of a process is stable. We also assume that
there is an upper bound of ‘ on the elapsed clock time if some locally controlled
action is enabled. This time bound can be violated if timing failures happen.
Finally, we provide the following de�nition of “stable” execution fragment of a

given process automaton. This de�nition is used later to de�ne a stable execution of a
distributed system.

De�nition 3.1. Given a process automaton PROCESSi, we say that an execution fragment
� of PROCESSi is stable if process i is either stopped or alive in � and � is regular.

3.2. Channels

We consider unreliable channels that can lose and duplicate messages. Reordering of
messages is allowed, i.e., is not considered a failure. Timing failures are also possible.
Fig. 1 shows the code of a Clock GTA CHANNELi; j, which models the communication
channel from process i to process j; there is one automaton for each possible choice
of i and j. Notice that we allow the possibility that the sender and the receiver are
the same process. We denote by M the set of messages that can be sent over the
channels.
The time-passage actions of CHANNELi; j do not let pass the time beyond t′′ + d if a

message (m; t′′), that is, a message m sent at time t′′, is in the channel. Clearly this
restriction is on the local time and messages can also be lost. However if the execution
is regular and no messages are lost then a particular message is delivered in a timely
manner. The following de�nition of “stable” execution fragment for a channel captures
the condition under which messages are delivered on time.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 45

CHANNELi; j

Signature:

Input: Send(m)i; j, Losei; j, Duplicatei; j
Output: Receive(m)i; j
Time-passage: �(t)

State:

Clock ∈R, initially arbitrary
Msgs, a set of elements of M× R, initially empty

Actions:

input Send(m)i; j
E�: add (m;Clock) to Msgs

output Receive(m)i; j
Pre: (m; t) is in Msgs, for some t
E�: remove (m; t) from Msgs

input Losei; j
E�: remove one element of Msgs

input Duplicatei; j
E�: let (m; t) be an element of Msgs

let t′ such that t6t′6Clock
place (m; t′) into Msgs

time-passage �(t)
Pre: Let t′¿0 be such that

for all (m; t′′)∈Msgs
Clock + t′6t′′ + d

E�: Clock :=Clock + t′

Fig. 1. Automaton CHANNELi; j .

De�nition 3.2. Given a channel CHANNELi; j, we say that an execution fragment � of
CHANNELi; j is stable if no Losei; j and Duplicatei; j actions occur in � and � is regular.

We remark that the above de�nition requires also that no Duplicatei; j actions happen.
This is needed for the performance analysis (duplicated messages may introduce delays
in the PAXOS algorithm).
The next lemma follows from the above discussion.

Lemma 4. In a stable execution fragment � of CHANNELi; j beginning in a reachable
state s and lasting for more than d time; we have that (i) all messages (m; t) that
in state s are in Msgsi; j are delivered by time d; and (ii) any message sent in � is
delivered within time d of the sending; provided that � lasts for more than d time
from the sending of the message.

3.3. Distributed systems

A distributed system is the composition of automata modelling channels and pro-
cesses. We are interested in modelling bad and good behaviors of a distributed system;

46 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

in order to do so we provide some de�nitions that characterize the behavior of a dis-
tributed system. The de�nition of “nice” execution fragment given later in this section,
captures the good behavior of a distributed system. Informally, a distributed system
behaves nicely if there are no process failures and recoveries, no channel failures and
no irregular steps – remember that an irregular step models a timing failure – and a
majority of the processes are alive.

De�nition 3.3. A communication system for the set I of processes, is the composition
of channel automata CHANNELi; j for all possible choices of i; j∈I.

De�nition 3.4. A distributed system is the composition of process automata modeling
the set I of processes and a communication system for I.

We de�ne the communication system SCHA to be the communication system for the
set I of all processes.
Next we provide the de�nition of “stable” execution fragment for a distributed system

exploiting the de�nition of stable execution fragment given previously for channels and
process automata.

De�nition 3.5. Given a distributed system S, we say that an execution fragment � of
S is stable if: (i) for all automata PROCESSi modelling process i, i∈ S it holds that
�|PROCESSi is a stable execution fragment for process i; (ii) for all channels CHANNELi; j
with i; j∈ S it holds that �|CHANNELi; j is a stable execution fragment for CHANNELi; j.

Finally we provide the de�nition of “nice” execution fragment that captures the
conditions under which PAXOS satis�es termination.

De�nition 3.6. Given a distributed system S, we say that an execution fragment � of
S is nice if � is a stable execution fragment and a majority of the processes are alive
in �.

The above de�nition requires a majority of processes to be alive. As is explained in
Section 6.6, any quorum scheme could be used instead of majorities.
In the rest of the paper, we will often use the word “system” to mean “distributed

system”.

4. The consensus problem

Several di�erent but related agreement problems have been considered in the lit-
erature. All have in common that processes start the computation with initial values
and at the end of the computation each process must reach a decision. The variations
mostly concern stronger or weaker requirements that the solution to the problem has
to satisfy. The requirement that a solution to the problem has to satisfy are captured
by three properties, usually called agreement, validity and termination. It is clear that

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 47

the de�nition of the consensus problem must take into account the distributed setting
in which the problem is considered.
We assume that for each process i there is an external agent that provides an initial

value v by means of an action Init(v)i. We denote by V the set of possible initial
values and, given a particular execution �, we denote by V� the subset of V consisting
of those values actually used as initial values in �, that is, those values provided by
Init(v)i actions executed in �. A process outputs a decision v by executing an action
Decide(v)i. If a process i executes action Decide(v)i more than once then the output
value v must be the same.
To solve the consensus problem means to give a distributed algorithm that, for any

execution � of the system, satis�es
• Agreement: All the Decide(v) actions in � have the same v.
• Validity: For any Decide(v) action in �, v belongs to V�.
and, for any admissible execution �, satis�es
• Termination: If �= �
 and
 is a nice execution fragment and for each process i
alive in
 an Init(v)i action occurs in � while process i is alive, then any process i
alive in
, executes a Decide(v)i action in �.

The agreement and termination conditions require, as one can expect, that processes
“agree” on a particular value. The validity condition is needed to relate the output
value to the input values (otherwise a trivial solution, i.e., always output a default
value, exists).

5. Failure detector and leader elector

In this section we provide a failure detector algorithm and then we use it to imple-
ment a leader election algorithm, which, in turn, is used in Section 6 to implement
PAXOS. The failure detector and the leader elector we implement here are both sloppy,
meaning that they are guaranteed to give accurate information on the system only in
a stable execution. However, this is enough for implementing PAXOS.

5.1. A failure detector

In this section we provide an automaton that detects process failures and recoveries.
This automaton satis�es certain properties that we will need in the rest of the paper. We
do not provide a formal de�nition of the failure detection problem, however, roughly
speaking, the failure detection problem is the problem of checking which processes are
alive and which ones are stopped.
Fig. 2 shows a Clock GTA, called DETECTOR(z; c)i, which detects failures. In our

setting failures and recoveries are modeled by means of actions Stopi and Recoveri.
These two actions are input actions of DETECTOR(z; c)i. Moreover DETECTOR(z; c)i has
InformStopped(j)i and InformAlive(j)i as output actions which are executed when,
respectively, the stopping and the recovering of process j are detected.

48 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

DETECTOR(z; c)i
Signature:

Input: Receive(m)j; i, Stopi, Recoveri
Output: InformStopped(j)i, InformAlive(j)i, Send(m)i; j
Internal: Check(j)i
Time-passage: �(t)

State:

Clock ∈R init. arbitrary
Status∈{alive; stopped} init. alive
Alive∈ 2I init. I

for all j∈I:
Prevrec(j)∈R¿0 init. arbitrary
Lastinform(j)∈R¿0 init. Clock
Lastsend(j)∈R¿0 init. Clock
Lastcheck(j)∈R¿0 init. Clock

Actions:

input Stopi
E�: Status := stopped

output Send(“Alive”)i; j
Pre: Status= alive

E�: Lastsend(j) :=Clock + z

input Receive(“Alive”)j; i
E�: if Status= alive then

Prevrec(j) :=Clock
if j 6∈Alive then
Alive :=Alive∪{j}
Lastcheck(j) :=Clock + c

internal Check(j)i
Pre: Status= alive

j∈Alive
E�: Lastcheck(j) :=Clock + c

if Clock¿Prevrec(j) + z + d
then Alive :=Alive\{j}

input Recoveri
E�: Status := alive

output InformStopped(j)i
Pre: Status= alive

j 6∈Alive
E�: Lastinform(j) :=Clock + ‘

output InformAlive(j)i
Pre: Status= alive

j∈Alive
E�: Lastinform(j) :=Clock + ‘

time-passage �(t)
Pre: none
E�: if Status= alive then

Let t′ be such that
∀j;Clock + t′6Lastinform(j)
∀j;Clock + t′6Lastsend(j)
∀j;Clock + t′6Lastcheck(j)

Clock :=Clock + t′

Fig. 2. Automaton DETECTOR for process i.

Automaton DETECTOR(z; c)i works by having each process constantly sending “Alive”
messages to each other process and checking that such messages are received from
other processes. It sends at least one “Alive” message in an interval of time of a �xed
length z (i.e., if an “Alive” message is sent at time t then the next one is sent before

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 49

time t + z) and checks for incoming messages at least once in an interval of time of
a �xed length c. Let us denote by SDET the system consisting of system SCHA and an
automaton DETECTOR(z; c)i for each process i∈I.
For simplicity of notation, henceforth we assume that z= ‘ and c= ‘, that is, we

use DETECTOR(‘; ‘)i. In practice the choice of z and c may be di�erent.
Using the strategy used by DETECTOR(‘; ‘)i it is not hard to prove the following

lemmas (for a detailed formal proof we refer the interested reader to [5]).

Lemma 5. If an execution fragment � of SDET; starting in a reachable state and
lasting for more than 3‘ + 2d time; is stable and process i is stopped in �; then
by time 3‘ + 2d from the beginning of �; for each process j alive in �; an action
InformStopped(i)j is executed and no subsequent InformAlive(i)j action is executed
in �.

Lemma 6. If an execution fragment � of SDET; starting in a reachable state and
lasting for more than d+ 2‘ time; is stable and process i is alive in �; then by time
d+2‘ from the beginning of �; for each process j alive in �; an action InformAlive(i)j
is executed and no subsequent InformStopped(i)j action is executed in �.

The strategy used by DETECTORi is a straightforward one. For this reason it is very
easy to implement. However the failure detector so obtained is not reliable, i.e., it
does not give accurate information, in the presence of failures (Stopi, Losei; j, irregular
executions). For example, it may consider a process stopped just because the “Alive”
message of that process was lost in the channel. Automaton DETECTORi is guaranteed
to provide accurate information on faulty and alive processes only when the system is
stable.

5.2. A leader elector

Electing a leader in an asynchronous distributed system is a di�cult task. An informal
argument that explains this di�culty is that the leader election problem is somewhat
similar to the consensus problem (which, in an asynchronous system subject to failures
is unsolvable [14]) in the sense that to elect a leader all processes must reach consensus
on which one is the leader. It is fairly clear how a failure detector can be used to elect
a leader. Indeed the failure detector gives information on which processes are alive
and which ones are not alive. This information can be used to elect the current leader.
We use the DETECTOR(‘; ‘)i automaton to check for the set of alive processes. Fig. 3
shows automaton LEADERELECTORi which is an MMTA. Remember that we use MMTAs
to describe in a simpler way Clock GTAs. Automaton LEADERELECTORi interacts with
DETECTOR(‘; ‘)i by means of actions InformStopped(j)i, which inform process i that
process j has stopped, and InformAlive(j)i, which inform process i that process j has
recovered. Each process updates its view of the set of alive processes when these two
actions are executed. The process with the biggest identi�er in the set of alive processes

50 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

LEADERELECTORi

Signature:

Input: InformStopped(j)i, InformAlive(j)i, Stopi, Recoveri
Output: Leaderi, NotLeaderi

State:

Status∈{alive; stopped} initially alive

Pool ∈ 2I initially {i}

Derived variable:

Leader, de�ned as max of Pool

Actions:

input Stopi
E�: Status := stopped

output Leaderi
Pre: Status= alive

i=Leader
E�: none

input InformStopped(j)i
E�: if Status= alive then

Pool :=Pool\{j}

input Recoveri
E�: Status := alive

output NotLeaderi
Pre: Status= alive

i 6=Leader
E�: none

input InformAlive(j)i
E�: if Status= alive

Pool :=Pool ∪{j}
Tasks and bounds:

{Leaderi, NotLeaderi}, bounds [0; ‘]
Fig. 3. Automaton LEADERELECTOR for process i.

is declared leader. We denote with SLEA the system consisting of SDET composed with
a LEADERELECTORi automaton for each process i∈I. Fig. 4 shows SLEA; it also shows
SDET, which is a subsystem of SLEA.
Since DETECTOR(‘; ‘)i is not a reliable failure detector, also LEADERELECTORi is not

reliable. Thus, it is possible that processes have di�erent views of the system so that
more than one process considers itself leader, or the process supposed to be the leader
is actually stopped. However, as the failure detector becomes reliable when the system
SDET executes a stable execution fragment (see Lemmas 5 and 6), also the leader
elector becomes reliable when system SLEA is stable. Notice that when SLEA executes
a stable execution fragment, so does SDET.
Formally, we say that a state s of system SLEA, is a unique-leader state if there

exists an alive process i such that for all alive processes j it holds that s:Leaderj = i.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 51

Fig. 4. The system SLEA.

In such a case, process i is the leader of state s. Moreover, we say that an execution
� of system SLEA, is a unique-leader execution if all the states of � are unique-leader
states with the same leader in all the states.
Next lemma states that in a stable execution fragment, eventually there is unique-

leader state.

Lemma 7. If an execution fragment � of SLEA; starting in a reachable state and
lasting for more than 4‘ + 2d; is stable; then by time 4‘ + 2d; there is a state
occurrence s such that in state s and in all the states after s there is a unique leader.
Moreover this unique leader is always the process with the biggest identi�er among
the processes alive in �.

Proof. First notice that the system SLEA consists of system SDET composed with other
automata. Hence by Theorem 3 we can use any property of SDET. In particular we
can use Lemmas 5 and 6 and thus we have that by time 3‘ + 2d each process has a
consistent view of the set of alive and stopped processes. Let i be the leader. Since �
is stable and thus also regular, by Lemma 1, within additional ‘ time, actions Leaderj
and NotLeaderj are consistently executed for each process j, including process j= i.
The fact that i is the process with the biggest identi�er among the processes alive in
� follows directly from the code of LEADERELECTORi.

52 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

We remark that, for many algorithms that rely on the concept of leader, it is im-
portant to provide exactly one leader. For example when the leader election is used
to generate a new token in a token ring network, it is important that there is exactly
one process (the leader) that generates the new token, because the network gives the
right to send messages to the owner of the token and two tokens may result in an
interference between two communications. For these algorithms, having two or more
leaders jeopardizes the correctness. Hence the sloppy leader elector provided before is
not suitable. However, for the purpose of this paper, LEADERELECTORi is all we need.

6. The PAXOS algorithm

PAXOS was devised a very long time ago 4 but its discovery, due to Lamport, is very
recent [19].
In this section we describe the PAXOS algorithm, provide an implementation using

Clock GT automata, prove its correctness and analyze its performance. The performance
analysis is given assuming that there are no failures nor recoveries, and a majority of
the processes are alive for a su�ciently long time. We remark that when no restrictions
are imposed on the possible failures, the algorithm might not terminate.

6.1. Overview

Our description of PAXOS is modular: we have separated various parts of the overall
algorithm; each piece copes with a particular aspect of the problem. This approach
should make the understanding of the algorithm much easier. The core part of the
algorithm is a module that we call BASICPAXOS; this piece incorporates the basic ideas
on which the algorithm itself is built. The description of this piece is further subdivided
into three components, namely BPLEADER, BPAGENT and BPSUCCESS.
In BASICPAXOS processes try to reach a decision by running what we call a “round”.

A process starting a round is the leader of that round. BASICPAXOS guarantees that, no
matter how many leaders start rounds, agreement and validity are not violated. This
means that in any run of the algorithm no two di�erent decisions are ever made and
any decision is equal to some input value. However to have a complete algorithm
that satis�es termination when there are no failures for a su�ciently long time, we
need to augment BASICPAXOS with another module; we call this module STARTER. The
functionality of STARTER is to make the current leader start a new round if the previous
one is not completed within some time bound.
Leaders are elected by using the LEADERELECTOR algorithm provided in Section 5.

We remark that this is possible because the presence of two or more leaders does not
jeopardize agreement or validity; however, to get termination there must be a unique
leader.

4 The most accurate information dates it back to the beginning of this millennium [19].

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 53

Fig. 5. PAXOS: process i. Some of the actions shown in the �gure will be de�ned later in this section.

Thus, our implementation of PAXOS is obtained by composing the following automata:
CHANNELi; j for the communication between processes, DETECTORi and LEADERELECTORi for
the leader election, BASICPAXOSi and STARTERi, for every process i; j∈I. The resulting
system is called SPAX.
Fig. 5 shows the automaton at process i. Notice that not all of the actions are drawn

in the picture: we have drawn only some of them and we refer to the formal code for
all of the actions. Actions Stopi and Recoveri are input actions of all the automata.
The SPAX automaton at process i interacts with automata at other processes by sending
messages over the channels. Channels are not drawn in the picture.
Fig. 6 shows the messages exchanged by processes i and j. The automata that

send and receive these messages are shown in the picture. We remark that channels
and actions interacting with channels are not drawn, as well as other actions for the
interaction with other automata.

54 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Fig. 6. BASICPAXOS: Messages.

It is worth to remark that some pieces of the algorithm do need to be able to measure
the passage of the time (DETECTORi, STARTERi and BPSUCCESSi) while others do not.
We will prove (Theorems 9 and 10) that the system SPAX solves the consensus

problem ensuring partial correctness – any output is guaranteed to be correct, that is,
agreement and validity are satis�ed – and (Theorem 17) that SPAX guarantees also ter-
mination when the system executes a nice execution fragment, that is, without failures
and recoveries and with at least a majority of the processes remaining alive.

6.1.1. Roadmap for the rest of the section
In Section 6.2 we provide automaton BASICPAXOS. This automaton is responsible for

carrying out a round in response to an external request. We prove that any round
satis�es agreement and validity and we provide a performance analysis for a successful
round. Then in Section 6.3 we provide automaton STARTER which takes care of the
problem of starting new rounds. In Section 6.4 we prove that the entire system SPAX is
correct and provide a performance analysis. In Section 6.5 we provide some comments
about the number of messages used by the algorithm. Finally Section 6.6 contains some
concluding remarks.

6.2. Automaton BASICPAXOS

In this section we present the automaton BASICPAXOS which is the core part of the
PAXOS algorithm. We begin by providing an overview of how automaton BASICPAXOS

works, then we provide the automaton code along with a detailed description and �nally
we prove that it satis�es agreement and validity.

6.2.1. Overview
The basic idea is to have processes propose values until one of them is accepted

by a majority of the processes; that value is the �nal output value. Any process may

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 55

propose a value by initiating a round for that value. The process initiating a round is
said to be the leader of that round while all processes, including the leader itself, are
said to be agents for that round. Informally, the steps for a round are the following.
(1) To initiate a round, the leader sends a “Collect” message to all agents 5 announcing

that it wants to start a new round and at the same time asking for information
about previous rounds in which agents may have been involved.

(2) An agent that receives a message sent in Step 1 from the leader of the round,
responds with a “Last” message giving its own information about rounds previously
conducted. With this, the agent makes a kind of commitment for this particular
round that may prevent it from accepting (in Step 4) the value proposed in some
other round. If the agent is already committed for a round with a bigger round
number then it informs the leader of its commitment with an “OldRound” message.

(3) Once the leader has gathered information about previous rounds from a majority
of agents, it decides, according to some rules, the value to propose for its round
and sends to all agents a “Begin” message announcing the value and asking them
to accept it. In order for the leader to be able to choose a value for the round it is
necessary that initial values be provided. If no initial value is provided, the leader
must wait for an initial value before proceeding with Step 3. The set of processes
from which the leader gathers information is called the info-quorum of the round.

(4) An agent that receives a message from the leader of the round sent in Step 3,
responds with an “Accept” message by accepting the value proposed in the current
round, unless it is committed for a later round and thus must reject the value
proposed in the current round. In the latter case the agent sends an “OldRound”
message to the leader indicating the round for which it is committed.

(5) If the leader gets “Accept” messages from a majority of agents, then the leader
sets its own output value to the value proposed in the round. At this point the
round is successful. The set of agents that accept the value proposed by the leader
is called the accepting-quorum.

Since a successful round implies that the leader of the round reached a decision, after a
successful round the leader still needs to do something, namely to broadcast the reached
decision. Thus, once the leader has made a decision it broadcasts a “Success” message
announcing the value for which it has decided. An agent that receives a “Success”
message from the leader makes its decision choosing the value of the successful round.
We use also an “Ack” message sent from the agent to the leader, so that the leader
can make sure that everyone knows the outcome.
Fig. 7 shows: (a) the steps of a successful round r; (b) the responses from an agent

that informs the leader that an higher numbered round r′ has been already initiated;
(c) the broadcast of a decision. The parameters used in the messages will be explained
later. Section 6.2.2 contains a description of the messages.

5 Thus it sends a message also to itself. This helps in that we do not have to specify di�erent behaviors
for a process according to the fact that it is both leader and agent or just an agent. We just need to specify
the leader behavior and the agent behavior.

56 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Fig. 7. Exchange of messages.

Since di�erent rounds may be carried out concurrently (several processes may con-
currently initiate rounds), we need to distinguish them. Every round has a unique
identi�er. Next we formally de�ne these round identi�ers. A round number is a pair
(x; i) where x is a nonnegative integer and i is a process identi�er. The set of round
numbers is denoted by R. A total order on elements of R is de�ned by (x; i)¡(y; j)
i� x¡y or, x=y and i¡j.
We say that round r precedes round r′ if r¡r′.
If round r precedes round r′ then we also say that r is a previous round, with respect

to round r′. We remark that the ordering of rounds is not related to the actual time
the rounds are conducted. It is possible that a round r′ is started at some point in time
and a previous round r, that is, one with r¡r′, is started later on.
For each process i, we de�ne a “+i” operation that given a round number (x; j) and

an integer y, returns the round number (x; j) +i y=(x + y; i).
Every round in the algorithm is tagged with a unique round number. Every message

sent by the leader or by an agent for a round (with round number) r ∈R, carries the

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 57

round number r so that no confusion among messages belonging to di�erent rounds is
possible.
However the most important issue is about the values that leaders propose for their

rounds. Indeed, since the value of a successful round is the output value of some pro-
cesses, we must guarantee that the values of successful rounds are all equal in order
to satisfy the agreement condition of the consensus problem. This is the tricky part
of the algorithm and basically all the di�culties derive from solving this problem.
Consistency is guaranteed by choosing the values of new rounds exploiting the infor-
mation about previous rounds from at least a majority of the agents so that, for any
two rounds, there is at least one process that participated in both rounds.
In more detail, the leader of a round chooses the value for the round in the following

way. In Step 1, the leader asks for information and in Step 2 an agent responds with
the number of the latest round in which it accepted the value and with the accepted
value or with round number (0; j) and nil if the agent has not yet accepted a value.
Once the leader gets such information from a majority of the agents (which is the
info-quorum of the round), it chooses the value for its round to be equal to the value
of the latest round among all those it has heard from the agents in the info-quorum
or equal to its initial value if all agents in the info-quorum were not involved in any
previous round. Moreover, in order to keep consistency, if an agent tells the leader
of a round r that the last round in which it accepted a value is round r′; r′¡r, then
implicitly the agent commits itself not to accept any value proposed in any other round
r′′; r′¡r′′¡r.
Given the above setting, if r′ is the round from which the leader of round r gets

the value for its round, then, when a value for round r has been chosen, any round
r′′; r′¡r′′¡r, cannot be successful; indeed at least a majority of the processes are
committed for round r, which implies that at least a majority of the processes are
rejecting round r′′. This, along with the fact that info-quorums and accepting-quorums
are majorities, implies that if a round r is successful, then any round with a bigger
round number r̃¿r is for the same value. Indeed the information sent by processes
in the info-quorum of round r̃ is used to choose the value for the round, but since
info-quorums and accepting-quorums share at least one process, at least one of the
processes in the info-quorum of round r′ is also in the accepting-quorum of round r.
Indeed, since the round is successful, the accepting-quorum is a majority. This implies
that the value of any round r̃¿r must be equal to the value of round r, which, in
turn, implies agreement.
We remark that instead of majorities for info-quorums and accepting-quorums, any

quorum system can be used. Indeed the only property that is required is that there be
a process in the intersection of any info-quorum with any accepting-quorum.

Example. Fig. 8 shows how the value of a round is chosen. In this example we have
a network of 5 processes, A; B; C; D; E (where the ordering is the alphabetical one)
and vA; vB denote the initial values of A and B. At some point process B is the leader
and starts round (1; B). It receives information from A; B; E (the set {A; B; E} is the

58 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Fig. 8. Choosing the values of rounds. Empty boxes denote that the process is in the info-quorum, and black
boxes denote acceptance. Dotted lines indicate commitments.

info-quorum of this round). Since none of them has been involved in a previous round,
process B is free to choose its initial value vB as the value of the round. However it
receives acceptance only from B; C (the set {B; C} is the accepting-quorum for this
round). Later, process A becomes the leader and starts round (2; A). The info-quorum
for this round is {A;D; E}. Since none of this processes has accepted a value in a
previous round, A is free to choose its initial value for its round. For round (2; D) the
info-quorum is {C;D; E}. This time in the quorum there is process C that has accepted
a value in round (1; B) so the value of this round must be the same of that of round
(1; B). For round (3; A) the info-quorum is {A; B; E} and since A has accepted the value
of round (2; A) then the value of round (2; A) is chosen for round (3; A). For round
(3; B) the info-quorum is {A; C; D}. In this case there are three processes that accepted
values in previous rounds: process A that has accepted the value of round (2; A) and
processes C;D, that have accepted the value of round (2; D). Since round (2; D) is the
higher round number, the value for round (3; B) is taken from round (2; D). Round
(3; B) is successful.
To end up with a decision value, rounds must be started until at least one is suc-

cessful. The basic consensus module BASICPAXOS guarantees that a new round does not

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 59

violate agreement or validity, that is, the value of a new round is chosen in such a way
that if the round is successful, it does not violate agreement and validity. However, it
is necessary to make BASICPAXOS start rounds until one is successful. We deal with this
problem in Section 6.3.

6.2.2. The code
In order to describe automaton BASICPAXOSi for process i we provide three automata.

One is called BPLEADERi and models the “leader” behavior of the process; another one is
called BPAGENTi and models the “agent” behavior of the process; the third one is called
BPSUCCESSi and it simply takes care of broadcasting a reached decision. Automaton
BASICPAXOSi is the composition of BPLEADERi ; BPAGENTi and BPSUCCESSi.
Figs. 9 and 10 show the code for BPLEADERi, while Fig. 11 shows the code for

BPAGENTi. We remark that these code fragments are written using the MMTA model.
Remember that we use MMTA to describe in a simpler way Clock GT automata.
Figs. 12 and 13 show automaton BPSUCCESSi. The purpose of this automaton is simply
to broadcast the decision once it has been reached by the leader of a round. Figs. 6
and 7 describe the exchange of messages used in a round.
It is worth noticing that the code fragments are “tuned” to work e�ciently when

there are no failures. Indeed messages for a given round are sent only once, that is, no
attempt is made to try to cope with losses of messages and responses are expected to
be received within given time bounds. Other strategies to try to conduct a successful
round even in the presence of some failures could be used. For example, messages
could be sent more than once to cope with the loss of some messages or a leader
could wait more than the minimum required time before abandoning the current round
and starting a new one – this is actually dealt with in Section 6.3. We have chosen
to send only one message for each step of the round: if the execution is nice, one
message is enough to conduct a successful round. Once a decision has been made,
there is nothing to do but try to send it to others. Thus once the decision has been
made by the leader, the leader repeatedly sends the decision to the agents until it gets
an acknowledgment. We remark that also in this case, in practice, it is important to
choose appropriate time-outs for the re-sending of a message; in our implementation
we have chosen to wait the minimum amount of time required by an agent to respond
to a message from the leader; if the execution is stable this is enough to ensure that
only one message announcing the decision is sent to each agent.
We remark that there is some redundancy that derives from having separate au-

tomata for the leader behavior and for the broadcasting of the decision. For example,
both automata BPLEADERi and BPSUCCESSi need to be aware of the decision, thus both
have a Decision variable (the Decision variable of BPSUCCESSi is updated when action
RndSuccessi is executed by BPLEADERi after the Decision variable of BPLEADERi is set).
Having only one automaton would have eliminated the need of such a duplication.
However we preferred to separate BPLEADERi and BPSUCCESSi because they accomplish
di�erent tasks.

60 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

BPLEADERi

Signature:

Input: Receive(m)j; i, m∈{“Last”; “Accept”; “OldRound”}
Init(v)i ; NewRoundi, Stopi ; Recoveri ; Leaderi ; NotLeaderi

Internal: Collecti ; BeginCasti,
GatherLast(m)i ; m is a “Last” message
GatherAccept(m)i ; m is a “Accept” message
GatherOldRound(m)i m is a “OldRound” message

Output: Send(m)i; j ; m∈{“Collect”; “Begin”}
Gathered(v)i ; Continuei ; RndSuccess(v)i

State:
Status∈{alive; stopped} init. alives
IamLeader, a boolean init. false
Mode∈{collect,gatherlast,

wait,begincast,

gatheraccept,

decided,done} init. done
InitValue∈V ∪ nil init. nil
Decision∈V ∪{nil} init. nil

CurRnd ∈R init. (0; i)
HighestRnd ∈R init. (0; i)
Value∈V ∪{nil} init. nil
ValFrom∈R init. (0; i)
InfoQuo∈ 2I init. {}
AcceptQuo∈ 2I init. {}
InMsgs, multiset of msgs init. {}
OutMsgs, multiset of msgs init. {}

Derived Variable:

LeaderAlive, a boolean, true i� Status= alive and IamLeader= true

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

input Leaderi
E�: if Status= alive then

IamLeader := true

input NotLeaderi
E�: if Status= alive then

IamLeader := false

output Send(m)i; j
Pre: Status= alive

mi; j ∈OutMsgs
E�: remove mi; j from OutMsgs

input Receive(m)j; i
E�: if Status= alive then

add mj; i to InMsgs

input Init(v)i
E�: if Status= alive then

InitValue := v

input NewRoundi
E�: if LeaderAlive= true then

CurRnd :=HighestRnd +i 1
HighestRnd :=CurRnd
Mode := collect

Fig. 9. Automaton BPLEADER for process i (part 1).

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 61

BPLEADERi (cont’d)

output Collecti
Pre: LeaderAlive= true

Mode= collect

E�: ValFrom := (0; i)
InfoQuo := {}
AcceptQuo := {}
∀j put 〈CurRnd ; “Collect”〉i; j
in OutMsgs
Mode := gatherlast

internal GatherLast(m)i
Pre: LeaderAlive= true

Mode= gatherlast
m= 〈r; “Last”; r′; v〉j; i
m∈ InMsgs
CurRnd = r

E�: remove m from InMsgs
InfoQuo := InfoQuo∪{j}
if ValFrom¡r′ and v 6= nil
then
Value := v
ValFrom := r′

if |InfoQuo|¿n=2 then
Mode := gathered

output Gathered(Value)
Pre: LeaderAlive= true

Mode= gathered

E�: if Value= nil and
InitValue 6= nil then
Value := InitValue

if Value 6= nil then
Mode := begincast
else
Mode := wait

internal Continuei
Pre: LeaderAlive= true

Mode= wait
Value= nil
InitValue 6= nil

E�: Value := InitValue
Mode := begincast

internal BeginCasti
Pre: LeaderAlive = true

Mode = begincast

E�: ∀j, let m be
〈CurRnd ; “Begin”;Value〉i; j
put m in OutMsgs
Mode := gatheraccept

internal GatherAccept(m)i
Pre: LeaderAlive= true

Mode= gatheraccept
m= 〈r; “Accept”〉j; i
m∈ InMsgs
CurRnd = r

E�: remove m from InMsgs
AcceptQuo :=AcceptQuo∪{j}
if |AcceptQuo|¿n=2 then
Decision :=Value
Mode := decided

output RndSuccess(Decision)i
Pre: LeaderAlive= true

Mode= decided

E�: Mode := done

internal GatherOldRound(m)i
Pre: Status= alive

m= 〈r; “OldRound”; r′〉j; i
m∈ InMsgs
HighestRnd¡r′

E�: remove m from InMsgs
HighestRnd := r′

Tasks and bounds:
{Collecti ; Gathered(v)i, Continuei, BeginCasti, RndSuccess(v)i}, bounds [0; ‘]
{GatherLast(m)i, m∈ InMsgs; m is a “Last” message}, bounds [0; ‘]
{GatherAccept(m)i, m∈ InMsgs; m is a “Accept” message}, bounds [0; ‘]
{GatherOldRound(m)i ; m∈ InMsgs, m is a “OldRound” message}, bounds [0; ‘]
{Send(m)i; j ; mi; j ∈OutMsgs}, bounds [0; ‘]

Fig. 10. Automaton BPLEADER for process i (part 2).

62 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

BPAGENTi

Signature:

Input: Receive(m)j; i ; m∈{“Collect”, “Begin”}
Init(v)i ; Stopi ; Recoveri

Internal: LastAccept(m)i ; m is a “Collect” message
Accept(m)i ; m is a “Begin” message

Output: Send(m)i; j ; m∈{“Last”, “Accept”, “OldRound”}

State:

Status∈{alive; stopped} init. alive
LastR∈R init. (0; i)
LastV ∈V ∪{nil} init. nil

Commit∈R init. (0; i)
InMsgs, multiset of msgs init. {}
OutMsgs, multiset of msgs init. {}

Actions:

input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

output Send(m)i; j
Pre: Status= alive

m∈OutMsgs
E�: remove mi; j from OutMsgs

input Receive(m)j; i
E�: if Status= alive then

add mj; i to InMsgs

input Init(v)i
E�: if Status= alives then

if LastV = nil then
LastV := v

internal LastAccept(m)i
Pre: Status= alive

m= 〈r; “Collect”〉j; i ∈ InMsgs
E�: remove m from InMsgs

if r¿Commit then
Commit := r
put 〈r; “Last”;LastR;LastV 〉i; j
in OutMsgs

else
put 〈r; “OldRound”;Commit〉i; j
in OutMsgs

internal Accept(m)i
Pre: Status= alive

m= 〈r; “Begin”; v〉j; i ∈ InMsgs
E�: remove m from InMsgs

if r¿Commit then
put 〈r; “Accept”〉i; j in InMsgs
LastR := r; LastV := v
else
put 〈r; “OldRound”;Commit〉i; j
in OutMsgs

Tasks and bounds:

{LastAccept(m)i, m∈ InMsgs; m is a “Collect” message}, bounds [0; ‘]
{Accept(m)i, m∈ InMsgs; m is a “Begin” message}, bounds [0; ‘]
{Send(m)i; j ; mi; j ∈OutMsgs }, bounds [0; ‘]

Fig. 11. Automaton BPAGENT for process i.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 63

BPSUCCESSi

Signature:

Input: Receive(m)j; i, m∈{“Ack”, “Success”}
Stopi, Recoveri, Leaderi, NotLeaderi, RndSuccess(v)i

Internal: SendSuccessi, Checki
Output: Send(m)i; j, m∈{“Ack”, “Success”}

Decide(v)i
Time-passage: �(t)

State:

Clock ∈R init. arbitrary
Status∈{alive; stopped} init. alive
IamLeader, a boolean init. false
Decision ∈ V ∪{nil} init. nil
Prevsend ∈ R∪{nil} init. nil
LastCheck ∈ R∪{∞} init. ∞
LastSS ∈ R∪{∞} init. ∞

For each j∈I

Acked(j), a boolean init. false
LastSendAck(j) ∈R∪{∞} init. ∞
LastSendSuc(j)∈R∪{∞} init. ∞
OutAckMsgs(j), set of msgs init. {}
OutSucMsgs(j), set of msgs init. {}

Actions:

input Stopi
E�: Status := stopped

input Leaderi
E�: if Status= alive and

IamLeader= false then
IamLeader := true

if Decision 6= nil then
LastSS := clock + ‘
PrevSend := nil

output Send(m)i; j
Pre: Status= alive

mi; j ∈OutAckMsgs(j)
E�: OutAckMsgs(j) := {}

LastSendAck(j) :=∞
output Send(m)i; j
Pre: Status= alive

mi; j ∈OutSucMsgs(j)
E�: OutSucMsgs(j) := {}

LastSendSuc(j) :=∞

input Recoveri
E�: Status := alive

input NotLeaderi
E�: if Status= alive then

IamLeader := false

LastSS :=∞
LastCheck :=∞
For each j∈I

LastSendSuc(j) :=∞
input Receive(〈“Ack”〉)j; i
E�: if Status= alive then

Acked(j) := true

input Receive(〈“Success”; v〉)j; i
E�: if Status= alive then

Decision := v
put 〈“Ack”〉i; j into OutAckMsgs(j)
LastSendAck(j) :=Clock + ‘

Fig. 12. Automaton BPSUCCESS for process i (part 1).

64 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

BPSUCCESSi (cont’d)

input RndSuccess(v)i
E�: if Status= alive then

Decision := v
if IamLeader= true then
LastSS :=Clock + ‘
PrevSend := nil

internal Checki
Pre: Status= alive

PrevSend 6= nil

t=PrevSend + (2‘ + 2d)
Clock¿t

E�: PrevSend := nil

LastSS :=Clock + ‘
LastCheck :=∞

output Decide(v)i
Pre: Status= alive

Decision 6= nil

Decision= v
E�: none

internal SendSuccessi
Pre: Status= alive

IamLeader= true

Decision 6= nil

PrevSend = nil

∃j 6= i, Acked(j)= false

E�: ∀j 6= i such that Acked(j)= false

put 〈“Success”;Decision〉i; j
in OutSucMsgs(j)
LastSendSuc(j) :=Clock + ‘
PrevSend :=Clock
LastCheck :=Clock + (2‘ + 2d) + ‘
LastSS :=∞

time-passage �(t)
Pre: none
E�: if Status= alive then

Let t′ be such that
Clock + t′6LastCheck
Clock + t′6LastSS
and for each j∈I

Clock + t′6LastSendAck(j)
Clock + t′6LastSendSuc(j)

Clock :=Clock + t′

Fig. 13. Automaton BPSUCCESS for process i (part 2).

In addition to the code fragments of BPLEADERi, BPAGENTi and BPSUCCESSi, we provide
here some comments about the messages, the state variables and the actions.

6.2.2.1. Messages. In this paragraph we describe the messages used for communication
between the leader i and the agents of a round. Every message m is a tuple of elements.
The messages are:
(1) “Collect” messages, m= 〈r; “Collect”〉i; j. This message is sent by the leader of a

round to announce that a new round, with number r, has been started and at the
same time to ask for information about previous rounds.

(2) “Last” messages, m= 〈r; “Last”; r′; v〉j; i. This message is sent by an agent to re-
spond to a “Collect” message from the leader. It provides the last round r′ in
which the agent has accepted a value, and the value v proposed in that round.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 65

If the agent did not accept any value in previous rounds, then v is either nil or
the initial value of the agent and r′ is (0; j).

(3) “Begin” messages, m= 〈r; “Begin”; v〉i; j. This message is sent by the leader of
round r to announce the value v of the round and at the same time to ask to
accept it.

(4) “Accept” messages, m= 〈r; “Accept”〉j; i. This message is sent by an agent to re-
spond to a “Begin” message from the leader. With this message an agent accepts
the value proposed in the current round.

(5) “OldRound” messages, m= 〈r; “OldRound”; r′〉j; i. This message is sent by an agent
to respond either to a “Collect” or a “Begin” message. It is sent when the agent
is committed to reject round r and it informs the leader about round r′, which is
the higher numbered round for which the agent is committed to reject round r.

(6) “Success” messages, m= 〈“Success”; v〉i; j. This message is sent by the leader to
broadcast the decision.

(7) “Ack” messages, m= 〈“Ack”〉j; i. This message is an acknowledgment, so that the
leader can be sure that an agent has received the “Success” message.

We use the kind of a message to indicate any message of that kind. For example
the notation m∈{“Collect”, “Begin”} means that m is either a “Collect” message, that
is m= 〈r; “Collect”〉 for some r, or a “Begin” message, that is m= 〈r; “Begin”; v〉 for
some r and v.

Automaton BPLEADERi. Variable Statusi is used to model process failures and recover-
ies. Variable IamLeaderi keeps track of whether the process is leader. Variable Modei
is used like a program counter, to go through the steps of a round. Variable InitValuei
contains the initial value of the process. Variable Decisioni contains the value, if any,
decided by process i. Variable CurRnd i contains the number of the round for which
process i is currently the leader. Variable HighestRnd i stores the highest round number
seen by process i. Variable Valuei contains the value being proposed in the current
round. Variable ValFromi is the round number of the round from which Valuei has
been chosen (recall that a leader sets the value for its round to be equal to the value
of a particular previous round, which is round ValFromi). Variable InfoQuoi con-
tains the set of processes for which a “Last” message has been received by process i
(that is, the info-quorum). Variable AcceptQuo contains the set of processes for which
an “Accept” message has been received by process i (that is, the accepting-quorum).
We remark that in the original paper by Lamport, there is only one quorum which
is �xed in the �rst exchange of messages between the leader and the agents, so that
only processes in that quorum can accept the value being proposed. However, there
is no need to restrict the set of processes that can accept the proposed value to the
info-quorum of the round. Messages from processes in the info-quorum are used only
to choose a consistent value for the round, and once this has been done anyone can
accept that value. This improvement is also suggested in Lamport’s paper [19]. Fi-
nally, variables InMsgsi and OutMsgsi are bu�ers used for incoming and outcoming
messages.

66 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Actions Stopi and Recoveri model process failures and recoveries. Actions Leaderi
and NotLeaderi are used to update IamLeaderi. Actions Send(m)i; j and Receive(m)i; j
send messages to the channels and receive messages from the channels. Action Init(v)i
is used by an external agent to set the initial value of process i. Action NewRoundi
starts a new round. It sets the new round number by increasing the highest round num-
ber ever seen. Action Collecti resets to the initial values all the variables that describe
the status of the round being conducted and broadcasts a “Collect” message. Action
GatherLast(m)i collects the information sent by agents in response to the leader’s “Col-
lect” message. This information is the number of the last round accepted by the agent
and the value of that round. Upon receiving these messages, GatherLast(m)i updates, if
necessary, variables Valuei and ValFromi. Also it updates the set of processes which
eventually will be the info-quorum of the current round. Action GatherLast(m)i is ex-
ecuted until information is received from a majority of the processes. When “Last”
messages have been collected from a majority of the processes, the info-quorum is
�xed and GatherLast(m)i is no longer enabled. At this point action Gathered(v)i is
enabled. If Valuei is de�ned then the value for the round is set, and action BeginCasti
is enabled. If Valuei is not de�ned (and this is possible if the leader does not have an
initial value and does not receive any value in “Last” messages) the leader waits for
an initial value before enabling action BeginCasti. When an initial value is provided,
action Continuei can be executed and it sets Valuei and enables action BeginCasti. Ac-
tion BeginCasti broadcasts a “Begin” message including the value chosen for the round.
Action GatherAccept(m)i gathers the “Accept” messages. If a majority of the processes
accept the value of the current round then the round is successful and GatherAccepti
sets the Decisioni variable to the value of the current round. When variable Decisioni
has been set, action RndSuccess(v)i is enabled. Action RndSuccessi is used to pass
the decision to BPSUCCESSi. Action GatherOldRound(m)i collects messages that inform
process i that the round previously started by i is “old”, in the sense that a round
with a higher number has been started. Process i can update, if necessary, variable
HighestRnd i.

Automaton BPAGENTi. Variable Statusi is used to model process failures and recov-
eries. Variable LastRi is the round number of the latest round for which process i has
sent an “Accept” message. Variable LastVi is the value for round LastRi. Variable
Commiti speci�es the round for which process i is committed and thus speci�es the
set of rounds that process i must reject, which are all the rounds with round number
less than Commiti. We remark that when an agent commits for a round r and sends
to the leader of round r a “Last” message specifying the latest round r′¡r in which
it has accepted the proposed value, it is enough that the agent commits to not accept
the value of any round r′′ in between r′ and r. To make the code simpler, when an
agent commits for a round r, it commits to reject any round r′′¡r. Finally, variables
InMsgsi and OutMsgsi are bu�ers used for incoming and outcoming messages.
Actions Stopi and Recoveri model process failures and recoveries. Actions Send(m)i; j

and Receive(m)i; j send messages to the channels and receive messages from the

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 67

channels. Action LastAccepti responds to the “Collect” message sent by the leader
by sending a “Last” message that gives information about the last round in which the
agent has been involved. Action Accepti responds to the “Begin” message sent by
the leader. The agent accepts the value of the current round if it is not rejecting the
round. In both LastAccepti and Accepti actions, if the agent is committed to reject the
current round because of a higher numbered round, then an “OldRound” message is
sent to the leader so that the leader can update the highest round number ever seen.
Action Init(v)i sets to v the value of LastVi only if this variable is unde�ned. With
this, the agent sends its initial value in a “Last” message whenever the agent has not
yet accepted the value of any round.

Automaton BPSUCCESSi. Variable Statusi is used to model process failures and re-
coveries. Variable IamLeaderi keeps track of whether the process is leader. Variable
Decisioni stores the decision. Variable Acked(j)i contains a boolean that speci�es
whether or not process j has sent an acknowledgment for a “Success” message. Vari-
able Prevsend i records the time of the previous broadcast of the decision. Variables
LastChecki, LastSSi, and variables LastSendAck(j)i, LastSendSuc(j)i, for j 6= i, are
used to impose the time bounds on enabled actions. Their use should be clear from
the code. Variables OutAckMsgs(j)i and OutSucMsgs(j)i, for j 6= i, are bu�ers for
outcoming “Ack” and “Success” messages, respectively. There are no bu�ers for in-
coming messages because incoming messages are processed immediately, that is, by
action Receive(m)i; j.
Actions Stopi and Recoveri model process failures and recoveries. Actions Leaderi

and NotLeaderi are used to update IamLeaderi. Actions Send(m)i; j and Receive(m)i; j
send messages to the channels and receive messages from the channels. Action Receive
(m)i handles the receipt of “Ack” and “Success” messages. Action RndSuccessi simply
takes care of updating the Decisioni variable and sets a time bound for the execution
of action SendSuccessi. Action SendSuccessi sends the “Success” message, along with
the value of Decisioni to all processes for which there is no acknowledgment. It sets
the time bounds for the re-sending of the “Success” message and also the time bounds
LastSendSuc(j)i for the actual sending of the messages. Action Checki re-enable action
SendSuccessi after an appropriate time bound. We remark that 2‘ + 2d is the time
needed to send the “Success” message and get back an “Ack” message (see the analysis
in the proof of Lemma 11).
We remark that automaton BPSUCCESSi needs to be able to measure the passage of

time.

6.2.3. Partial correctness
Let us de�ne the system SBPX to be the composition of system SCHA and automaton

BASICPAXOSi for each process i∈I (remember that BASICPAXOSi is the composition of
automata BPLEADERi, BPAGENTi and BPSUCCESSi). In this section we prove the partial
correctness of SBPX: we show that in any execution of the system SBPX, agreement and
validity are guaranteed.

68 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

For these proofs, we augment the algorithm with a collection H of history variables.
Each variable in H is an array indexed by the round number. For every round number
r a history variable contains some information about round r. In particular the set H
consists of:

Hleader(r)∈I∪ nil, initially nil (the leader of round r).
Hvalue(r)∈V ∪ nil, initially nil (the value for round r).
Hfrom(r)∈R∪ nil, initially nil (the round from which Hvalue(r) is taken).
Hinfquo(r), subset of I, initially { } (the info-quorum of round r).
Haccquo(r), subset of I, initially { } (the accepting-quorum of round r).
Hreject(r), subset of I, initially { } (processes committed to reject round r).
The code fragments of automata BPLEADERi and BPAGENTi augmented with the history
variables are shown in Figs. 14 and 15. The �gures show only the actions that change
history variables. Actions of BPSUCCESSi do not change history variables.
Initially, when no round has been started yet, all the information contained in the

history variables is set to the initial values. All but Hreject(r) history variables of
round r are set by the leader of round r, thus if the round has not been started these
variables remain at their initial values. More formally we have the following lemma.

Lemma 8. In any state of an execution of SBPX; if Hleader(r)= nil then
Hvalue(r)= nil; Hfrom(r)= nil; Hinfquo(r)= { }; Haccquo(r)= { }.

Proof. By an easy induction.

Given a round r, Hreject(r), is modi�ed by all the processes that commit them-
selves to reject round r, and we know nothing about its value at the time round r is
started.
Next we de�ne some key concepts that will be instrumental in the proofs.

De�nition 6.1. In any state of the system SBPX, a round r is said to be dead if
|Hreject(r)|¿n=2.

That is, a round r is dead if at least n=2 of the processes are rejecting it. Hence, if
a round r is dead, there cannot be a majority of the processes accepting its value, i.e.,
round r cannot be successful.
We denote by RS the set {r ∈R | Hleader(r) 6= nil} of started rounds and by RV

the set {r ∈R | Hvalue(r) 6= nil} of rounds for which the value has been chosen.
Clearly in any state s of an execution of SBPX, we have that RV ⊆RS .
Next we formally de�ne the concept of anchored round which is crucial to the

proofs. The idea of anchored round is borrowed from [21]. Informally a round r is
anchored if its value is consistent with the value chosen in any previous round r′.
Consistent means that either the value of round r is equal to the value of round r′ or
round r′ is dead. Intuitively, it is clear that if all the rounds are either anchored or
dead, then agreement is satis�ed.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 69

ABPleaderi (history variables)

input NewRoundi
E�: if LeaderAlive= true then

CurRnd :=HighestRnd+ 1
• Hleader(CurRnd) := i
HighestRnd :=CurRnd
Mode := collect

output BeginCasti
Pre: LeaderAlive= true

Mode= begincast

E�: ∀j put 〈CurRnd ; “Begin”;Value〉i; j
in OutMsgs

• Hinfquo(CurRnd) := InfoQuo
• Hfrom(CurRnd) :=ValFrom
• Hvalue(CurRnd) :=Value
Mode := gatheraccept

internal GatherAccept(m)i
Pre: LeaderAlive= true

Mode = gatheraccept

m= 〈r; “Accept”〉j; i ∈ InMsgs
CurRnd = r

E�: remove m from InMsgs
AcceptQuo := AcceptQuo ∪{j}
if |AcceptQuo|¿n=2 then
Decision :=Value
• Haccquo(CurRnd) :=AcceptQuo
Mode := decide

Fig. 14. Actions of BPLEADERi for process i augmented with history variables. Only the actions that do
change history variables are shown. Other actions are the same as in BPLEADERi , i.e. they do not change
history variables. Actions of BPSUCCESSi do not change history variables.

De�nition 6.2. A round r ∈RV is said to be anchored if for every round r′ ∈RV such
that r′¡r, either round r′ is dead or Hvalue(r′)= Hvalue(r).

Next we prove that SBPX guarantees agreement, by using a sequence of invariants.
The key invariant is Invariant 6.8 which states that all rounds are either dead or
anchored. The �rst invariant, Invariant 6.3, captures the fact that when a process sends
a “Last” message in response to a “Collect” message for a round r, then it commits
to not vote for rounds previous to round r.

70 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

ABPagenti (history variables)

internal LastAccept(m)i
Pre: Status= alive

= 〈r; “Collect”〉j; i ∈ InMsgs
E�: remove m from InMsgs

if r¿Commit then
Commit := r
• For all r′, LastR¡r′¡r
• Hreject(r′) := Hrejectt(r′)∪{i}
put 〈r; “Last”;LastR;LastV 〉i; j
in OutMsgs

else
put 〈r; “OldRound”;Commit〉i; j
in OutMsgs

Fig. 15. Actions of BPAGENTi for process i augmented with history variables. Only the actions that do
change history variables are shown. Other actions are the same as in BPAGENTi , i.e. they do not change
history variables. Actions of BPSUCCESSi do not change history variables.

Invariant 6.3. In any state s of an execution of SBPX; if message 〈r; “Last”; r′′; v〉j; i is
in OutMsgsj; then j∈ Hreject(r′); for all r′ such that r′′¡r′¡r.

Proof. We prove the invariant by induction on the length k of the execution �. The
base is trivial: if k =0 then �= s0, and in the initial state no message is in OutMsgsj.
Hence the invariant is vacuously true. For the inductive step assume that the invariant
is true for �= s0�1s1 : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We need to
prove that the invariant is still true in s. We distinguish two cases.
Case 1: 〈r; “Last”; r′′; v〉j; i ∈ sk :OutMsgsj. By the inductive hypothesis we have j∈ sk :

Hreject(r′), for all r′ such that r′′¡r′¡r. Since no process is ever removed from
any Hreject set, we have j∈ s:Hreject(r′), for all r′ such that r′′¡r′¡r.
Case 2: 〈r; “Last”; r′′; v〉j; i =∈ sk :OutMsgsj. Since by hypothesis we have 〈r; “Last”;

r′′; v〉j; i ∈ s:OutMsgsj, it must be that �= LastAccept(m)j, with m= 〈r; “Collect”〉 and
it must be sk :LastRj = r′′. Then the invariant follows by the code of LastAccept(m)j
which puts process j into Hreject(r′) for all r′ such that r′′¡r′¡r.

The next invariant states that the commitment made by an agent when sending a
“Last” message is still in e�ect when the message is in the communication channel.
This should be obvious, but to be precise in the rest of the proof we prove it formally.

Invariant 6.4. In any state s of an execution of SBPX; if message 〈r; “Last”; r′′; v〉j; i is
in CHANNELj; i ; then j∈ Hreject(r′); for all r′ such that r′′¡r′¡r.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 71

Proof. We prove the invariant by induction on the length k of the execution �. The
base is trivial: if k =0 then �= s0, and in the initial state no messages are in CHANNELj; i.
Hence the invariant is vacuously true. For the inductive step assume that the invariant
is true for �= s0�1s1 : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We need to
prove that the invariant is still true in s. We distinguish two cases.
Case 1: 〈r; “Last”; r′′; v〉j; i ∈ sk :CHANNELj; i. By the inductive hypothesis we have j∈ sk :

Hreject(r′), for all r′ such that r′′¡r′¡r. Since no process is ever removed from
any Hreject set, we have j∈ s:Hreject(r′), for all r′ such that r′′¡r′¡r.
Case 2: 〈r; “Last”; r′′; v〉j; i =∈ sk :CHANNELj; i. Since by hypothesis 〈r; “Last”; r′′; v〉j; i ∈ s:

OutMsgsj, it must be that �=Send(m)j; i with m= 〈r; “Last”; r′′; v〉j; i. By the precon-
dition of action Send(m)j; i we have that message 〈r; “Last”; r′′; v〉j; i ∈ sk :OutMsgsj. By
Invariant 6.3 we have that process j∈ sk :Hreject(r′) for all r′ such that r′′¡r′¡r.
Since no process is ever removed from any Hreject set, we have j∈ s:Hreject(r′),
for all r′ such that r′′¡r′¡r.

The next invariant states that the commitment made by an agent when sending a
“Last” message is still in e�ect when the message is received by the leader. Again,
this should be obvious.

Invariant 6.5. In any state s of an execution of SBPX; if message 〈r; “Last”; r′′; v〉j; i is
in InMsgsi ; then j∈ Hreject(r′); for all r′ such that r′′¡r′¡r.

Proof. We prove the invariant by induction on the length k of the execution �. The
base is trivial: if k =0 then �= s0, and in the initial state no messages are in InMsgsi.
Hence the invariant is vacuously true. For the inductive step assume that the invariant
is true for �= s0�1s1 : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We need to
prove that the invariant is still true in s. We distinguish two cases.
Case 1: 〈r; “Last”; r′′; v〉j; i ∈ sk :InMsgsi. By the inductive hypothesis we have j∈ sk :

Hreject(r′), for all r′ such that r′′¡r′¡r. Since no process is ever removed from
any Hreject set, we have j∈ s:Hreject(r′), for all r′ such that r′′¡r′¡r.
Case 2: 〈r; “Last”; r′′; v〉j; i =∈ sk :InMsgsi. Since by hypothesis 〈r; “Last”; r′′; v〉j; i ∈ s:

InMsgsi, it must be that �=Receive(m)i; j with m= 〈r; “Last”; r′′; v〉j; i. In order to
execute action Receive(m)i; j we must have 〈r; “Last”; r′′; v〉j; i ∈ sk :CHANNELj; i. By In-
variant 6.4 we have j∈ sk :Hreject(r′) for all r′ such that r′′¡r′¡r. Since no process
is ever removed from any Hreject set, we have j∈ s:Hreject(r′), for all r′ such that
r′′¡r′¡r.

The following invariant states that the commitment to reject smaller rounds, made
by the agent is still in e�ect when the leader updates its information about previous
rounds using the agents’ “Last” messages.

Invariant 6.6. In any state s of an execution SBPX; if process j∈ InfoQuoi ; for some
process i; and CurRnd i= r; then ∀r′ such that s:ValFromi¡r′¡r; we have that
j∈ Hreject(r′).

72 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Proof. We prove the invariant by induction on the length k of the execution �. The
base is trivial: if k =0 then �= s0, and in the initial state no process j is in InfoQuoi
for any i. Hence the invariant is vacuously true. For the inductive step assume that the
invariant is true for �= s0�1s1 : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We
need to prove that the invariant is still true in s. We distinguish two cases.
Case 1: In state sk , j∈ InfoQuoi, for some process i, and CurRnd i= r. Then by

the inductive hypothesis, in state sk we have that j∈ Hreject(r′), for all r′ such that
sk :ValFromi¡r′¡r. Since no process is ever removed from any Hreject set and, as
long as CurRnd i is not changed, variable ValFromi is never decreased, then also in
state s we have that j∈ Hreject(r′), for all r′ such that s:ValFromi¡r′¡r.
Case 2: In state sk , it is not true that j∈ InfoQuoi, for some process i, and CurRnd i

= r. Since in state s it holds that j∈ InfoQuoi, for some process i, and CurRnd i= r,
it must be the case that �= GatherLast(m)i with m= 〈r; “Last”; r′′; v〉j; i. Notice that,
by the precondition of GatherLast(m)i, m∈ InMsgsi. Hence, by Invariant 6.5 we have
that j∈ Hreject(r′), for all r′ such that r′′¡r′¡r. By the code of the GatherLast(m)i
action we have that ValFromi¿r′′. Whence the invariant is proved.

The following invariant is basically the previous one stated when the leader has �xed
the info-quorum.

Invariant 6.7. In any state of an execution of SBPX; if j∈ Hinfquo(r) then ∀r′ such
that Hfrom(r)¡r′¡r; we have that j∈ Hreject(r′).

Proof. We prove the invariant by induction on the length k of the execution �. The base
is trivial: if k =0 then �= s0, and in the initial state we have that for every round r,
Hleader(r)= nil and thus by Lemma 8 there is no process j in Hinfquo(r). Hence
the invariant is vacuously true. For the inductive step assume that the invariant is true
for �= s0�1s1 : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We need to prove
that the invariant is still true in s. We distinguish two cases.
Case 1: In state sk , j∈ Hinfquo(r). By the inductive hypothesis, in state sk we have

that j∈ Hreject(r′), for all r′ such that Hfrom(r)¡r′¡r. Since no process is ever
removed from any Hreject set, then also in state s we have that j∈ Hreject(r′), for
all r′ such that Hfrom(r)¡r′¡r.
Case 2: In state sk ; j 6∈ Hinfquo(r). Since in state s; j∈ Hinfquo(r), it must be

the case that action � puts j in Hinfquo(r). Thus it must be �=BeginCasti for some
process i, and it must be sk :CurRndi= r and j∈ sk :InfoQuoi. Since action BeginCasti
does not change CurRnd i and InfoQuoi we have that s:CurRndi= r and j∈ s:InfoQuoi.
By Invariant 6.6 we have that j∈ Hreject(r′) for all r′ such that s:ValFromi¡r′¡r.
By the code of BeginCasti we have that Hfrom(r)= s:ValFromi.

We are now ready to prove the main invariant.

Invariant 6.8. In any state of an execution of SBPX; any nondead round r ∈RV is
anchored.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 73

Proof. We proceed by induction on the length k of the execution �. The base is
trivial. When k =0 we have that �= s0 and in the initial state no round has been
started yet. Thus Hleader(r)= nil and by Lemma 8 we have that RV = { } and thus
the assertion is vacuously true. For the inductive step assume that the assertion is true
for �= s0�1s1] : : : �ksk and consider the execution s0�1s1 : : : �ksk�s. We need to prove
that, for every possible action � the assertion is still true in state s. First we observe
that the de�nition of “dead” round depends only upon the history variables and that the
de�nition of “anchored” round depends upon the history variables and the de�nition of
“dead” round. Thus the de�nition of “anchored” depends only on the history variables.
Hence actions that do not modify the history variables cannot a�ect the truth of the
assertion. The actions that change history variables are:
(1) �=NewRoundi
(2) �=BeginCasti
(3) �=GatherAccept(m)i
(4) �=LastAccept(m)i
Case 1: Assume �=NewRoundi. This action sets the history variable Hleader(r),

where r is the round number of the round being started by process i. The new round
r does not belong to RV since Hvalue(r) is still unde�ned. Thus the assertion of the
lemma cannot be contradicted by this action.
Case 2: Assume �=BeginCasti. Action � sets Hvalue(r), Hfrom(r) and Hinfquo(r)

where r= sk :CurRnd i. Round r belongs to RV in the new state s. In order to prove
that the assertion is still true it su�ces to prove that round r is anchored in state s
and any round r′, r′¿r is still anchored in state s. Indeed rounds with round number
less than r are still anchored in state s, since the de�nition of anchored for a given
round involves only rounds with smaller round numbers.
First we prove that round r is anchored. From the precondition of BeginCasti we

have that Hinfquo(r) contains more than n=2 processes; indeed variable Modei is equal
to begincast only if the cardinality of InfoQuoi is greater than n=2. Using Invari-
ant 6.7 for each process j in s:Hinfquo(r), we have that for every round r′, such that
s:Hfrom(r)¡r′¡r, there are more than n=2 processes in the set Hreject(r′), which
means that every round r′, s:Hfrom(r)¡r′¡r, is dead. Moreover, by the code of �
we have that s:Hfrom(r)= sk :ValFromi and s:Hvalue(r)= sk :Valuei. From the code
(see action GatherLasti) it is immediate that in any state Valuei is the value of round
ValFromi. In particular we have that sk :Valuei= sk :Hvalue(sk :ValFromi). Hence we
have s:Hvalue(r)= s:Hvalue(s:Hfrom(r)). Finally we notice that round Hfrom(r) is an-
chored (any round previous to r is still anchored in state s) and thus we have that any
round r′¡r is either dead or such that s:Hvalue(s:Hfrom(r))= s:Hvalue(r′). Hence for
any round r′¡r we have that either round r′ is dead or that s:Hvalue(r)= s:Hvalue(r′).
Thus round r is anchored in state s.
Finally, we need to prove that any non-dead round r′, r′¿r that was anchored in sk is

still anchored in s. Since action BeginCasti modi�es only history variables for round r,
we only need to prove that in state s, Hvalue(r′)= Hvalue(r). Let r′′ be equal to
Hfrom(r). Since r′ is anchored in state sk we have that sk :Hvalue(r′)= sk :Hvalue(r′′).

74 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Again because BeginCasti modi�es only history variables for round r, we have that
s:Hvalue(r′)= s:Hvalue(r′′). But we have proved that round r is anchored in state s
and thus s:Hvalue(r)= s:Hvalue(r′′). Hence s:Hvalue(r′)= s:Hvalue(r).
Case 3: Assume �=GatherAccept(m)i. This action modi�es only variable Haccquo,

which is not involved in the de�nition of anchored. Thus this action cannot make the
assertion false.
Case 4: Assume �=LastAccept(m)i. This action modi�es Hinfquo and Hreject.

Variable Hinfquo is not involved in the de�nition of anchored. Action LastAccept(m)i
may put process i in Hreject of some rounds and this, in turn, may make those rounds
dead. However this cannot make false the assertion; indeed if a round r was anchored
in sk it is still anchored when another round becomes dead.

The next invariant follows from the previous one and gives a more direct statement
about the agreement property.

Invariant 6.9. In any state of an execution of SBPX, all the Decision variables that
are not nil, are set to the same value.

Proof. We prove the invariant by induction on the length k of the execution �. The
base of the induction is trivially true: for k =0 we have that �= s0 and in the initial
state all the Decisioni variables are unde�ned.
Assume that the assertion is true for �= s0�1s1 : : : �ksk and consider the execution

s0�1s1 : : : �ksk�s. We need to prove that, for every possible action � the assertion is
still true in state s. Clearly the only actions which can make the assertion false are
those that set Decisioni, for some process i. Thus we only need to consider actions
GatherAccept(〈r; “Accept”〉)i and actions RndSuccess(v)i and Receive(〈“Success”; v〉)i; j
of automaton BPSUCCESSi.
Case 1. Assume �= GatherAccept(〈r; “Accept”〉)i. This action sets Decisioni to

Hvalue(r). If all Decisionj, j 6= i, are unde�ned then Decisioni is the �rst decision
and the assertion is still true. Assume there is only one Decisionj already de�ned. Let
Decisionj = Hvalue(r′) for some round r′. By Invariant 6.8, rounds r and r′ are an-
chored and thus we have that Hvalue(r′)= Hvalue(r). Whence Decisioni=Decisionj.
If there are some Decisionj, j 6= i, which are already de�ned, then by the inductive
hypothesis they are all equal. Thus, the lemma follows.
Case 2. Assume �=RndSuccess(v)i. This action sets Decisioni to v. By the code,

value v is equal to the Decisionj of some other process. The lemma follows by the
inductive hypothesis.
Case 3. Assume �=Receive(〈“Success”; v〉)i. This action sets Decisioni to v. It is

easy to see (by the code) that the value sent in a “Success” message is always the
Decision of some process. Thus we have that Decisioni is equal to Decisionj for some
other process j and the lemma follows by the inductive hypothesis.

Finally we can prove that agreement is satis�ed.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 75

Theorem 9. In any execution of the system SBPX; agreement is satis�ed.

Proof. Immediate from Invariant 6.9.

Validity is easier to prove since the value proposed in any round comes either from
a value supplied by an Init(v)i action or from a previous round.

Invariant 6.10. In any state of an execution � of SBPX, for any r ∈RV we have that
Hvalue(r)∈V�.

Proof. We proceed by induction on the length k of the execution �. The base of the
induction is trivially true: for k =0 we have that �= s0 and in the initial state all the
Hvalue variables are unde�ned.
Assume that the assertion is true for �= s0�1s1 : : : �ksk and consider the execution

s0�1s1 : : : �ksk�s. We need to prove that, for every possible action � the assertion is
still true in state s. Clearly the only actions that can make the assertion false are
those that modify Hvalue. The only action that modi�es Hvalue is BeginCast. Thus,
assume �=BeginCasti. This action sets Hvalue(r) to Valuei. We need to prove that
all the values assigned to Valuei are in the set V�. Variable Valuei is modi�ed by
actions NewRoundi and GatherLast(m)i. We can easily take care of action NewRoundi
because it simply sets Valuei to be InitValuei which is obviously in V�. Thus we only
need to worry about GatherLast(m)i actions. A GatherLast(m)i action sets variable
Valuei to the value speci�ed into the “Last” message if that value is not nil. The
value speci�ed into any “Last” message is either nil or the value Hvalue(r′) of a
previous round r′; by the inductive hypothesis we have that Hvalue(r′) belongs to V�.

Invariant 6.11. In any state of an execution of SBPX, all the Decision variables that
are not unde�ned are set to some value in V�.

Proof. A variable Decision is always set to be equal to Hvalue(r) for some r. Thus
the invariant follows from Invariant 6.10.

Theorem 10. In any execution of the system SBPX; validity is satis�ed.

Proof. Immediate from Invariant 6.11.

6.2.4. Analysis of SBPX
In this section we analyze the performance of SBPX. Since termination is not guaran-

teed by SBPX in this section we provide a performance analysis (Lemma 14) assuming
that a successful round is conducted. Then in Section 6.4, Theorem 17 provides the per-
formance analysis of SPAX, which, in a nice execution fragment, guarantees termination.
Let us begin by making precise the meaning of the expressions “the start (end) of

a round”.

76 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

De�nition 6.12. In an execution fragment whose states are all unique-leader states
with process i being the unique leader, the start of a round is the execution of action
NewRound i and the end of a round is the execution of action RndSuccessi.

A round is successful if it ends, that is, if the RndSuccessi action is executed by
the leader i. Moreover we say that a process i reaches its decision when automaton
BPSUCCESSi sets its Decisioni variable. We remark that, in the case of a leader, the
decision is actually reached when the leader knows that a majority of the processes
have accepted the value being proposed. This happens in action GatherAccept(m)i of
BPLEADERi. However, to be precise in our proofs, we consider the decision reached when
the variable Decisioni of BPSUCCESSi is set; for the leader this happens exactly at the
end of a successful round. Notice that the Decide(v)i action, which communicates the
decision v of process i to the external environment, is executed within ‘ time from
the point in time when process i reaches the decision, provided that the execution is
regular (in a regular execution actions are executed within the expected time bounds).
The following lemma states that once a round has ended, if the execution is stable,

the decision is reached by all the alive processes within linear (in the number of
processes) time.

Lemma 11. If an execution fragment � of the system SBPX; starting in a reachable
state s and lasting for more than 3‘ + 2d time; is stable and unique-leader; with
process i leader; and process i reaches a decision in state s; then by time 3‘ + 2d;
every alive process j 6= i has reached a decision, and the leader i has Acked(j)i= true

for every alive process j 6= i.

Proof. First notice that SBPX is the composition of CHANNELi; j and other automata.
Hence, by Theorem 3 we can apply Lemma 4. Let J be the alive processes j 6= i such
that Acked(j)i= false. If J is empty then the lemma is trivially true. Hence assume
J 6= { }.
By assumption, the action that brings the system into state s is action RndSuccessi

(the leader reaches a decision in state s). Hence action SendSuccessi is enabled. By
the code of BPSUCCESSi, action SendSuccessi is executed within ‘ time. This action puts
a “Success” message for each process j∈J into OutSucMsgs(j)i. By the code of
BPSUCCESSi, each of these messages is put on CHANNELi; j, i.e., action Send(〈“Success”;
v〉)i; j is executed, within ‘ time. By Lemma 4 each alive process j∈J receives the
“Success” message, i.e., executes a Receive(〈“Success”; v〉)i; j action, within d time.
This action sets Decisionj to v and puts an “Ack” message into OutAckMsgs(i)j.
By the code of BPSUCCESSj, this “Ack” message is put on CHANNELj; i, i.e., action
Send(“Ack”)j; i is executed, within ‘ time, for every process j. By Lemma 4 the leader i
receives the “Ack” message, i.e., executes a Receive(〈“Ack”〉)j; i action, within d time,
for each process j. This action sets Acked(j)i= true.
Summing up the time bounds we get the lemma.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 77

In the following we are interested in the time analysis from the start to the end of
a successful round. We consider a unique-leader execution fragment �, with process i
leader, and such that the leader i has started a round by the �rst state of � (that is, in
the �rst state of �, CurRnd i= r for some round number r).
We remark that in order for the leader to execute step 3 of a round, i.e., action

BeginCasti, it is necessary that Valuei be de�ned. If the leader does not have an initial
value and no agent sends a value in a “Last” message, variable Valuei is not de�ned.
In this case the leader needs to wait for the execution of the Init(v)i to set a value to
propose in the round (see action Continuei). Clearly the time analysis depends on the
time of occurrence of the Init(v)i. To deal with this we use the following de�nition.

De�nition 6.13. Given an execution fragment �, we de�ne ti� to be 0, if variable
InitValuei is de�ned in the �rst state of �; the time of occurrence of action Init(v)i,
if variable InitValuei is unde�ned in the �rst state of � and action Init(v)i is executed
in �; ∞, if variable InitValuei is unde�ned in the �rst state of � and no Init(v)i action
is executed in �. Moreover, we de�ne T i� to be max{7‘ + 2d; ti� + 2‘}.

Informally, the above de�nition of T i� gives the time, counted from the beginning of
a round, by which a BeginCasti action is expected to be executed, assuming that the
execution � is stable and the round being conducted is successful. More formally we
have the following lemma.

Lemma 12. Suppose that for an execution fragment � of the system SBPX; starting
in a reachable state s in which s:Decision= nil; then it holds that
(i) � is stable;
(ii) � is a unique-leader execution; with process i leader;
(iii) � lasts for more than T i� ;
(iv) the action that brings the system into state s is action NewRound i for some

round r;
(v) round r is successful.
Then we have that action BeginCasti for round r is executed within time T

i
� of the

beginning of �.

Proof. First notice that SBPX is the composition of CHANNELi; j and other automata.
Hence, by Theorem 3 we can apply Lemmas 1 and 4. Since the execution is stable, it
is also regular, and thus by Lemma 1 actions of BPLEADERi and BPAGENTi are executed
within ‘ time and by Lemma 4 messages are delivered within d time.
Action NewRoundi enables action Collecti which is executed in at most ‘ time. This

action puts “Collect” messages, one for each agent j, into OutMsgsi. By the code of
BPLEADERi (see tasks and bounds) each one of these messages is sent on CHANNELi; j i.e.,
action Sendi; j is executed for each of these messages, within ‘ time. By Lemma 4
a “Collect” message is delivered to each agent j, i.e., action Receivei; j is executed,
within d time. Then it takes ‘ time for an agent to execute action LastAcceptj which

78 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

puts a “Last” message in OutMsgsj. By the code of BPAGENTi (see tasks and bounds)
it takes additional ‘ time to execute action Sendj; i to send the “Last” message on
CHANNELj; i. By Lemma 4, this “Last” message is delivered to the leader, i.e., action
Receivej; i is executed, within additional d time. By the code of BPLEADERi (see tasks
and bounds) each one of these messages is processed by GatherLasti within ‘ time.
Action Gatheredi is executed within additional ‘ time.
At this point there are two possible cases: (i) Valuei is de�ned and (ii) Valuei is

not de�ned. In case (i), action BeginCasti is enabled and is executed within ‘ time.
Summing up the times considered so far we have that action BeginCasti is executed
within 7‘+2d time from the start of the round. In case (ii), action Continuei is executed
within ‘ time of the execution of action Continuei, and thus by time ti�+‘. This action
enables action BeginCasti which is executed within additional ‘ time. Hence action
BeginCasti is executed by time t

i
� + 2‘. Putting together the two cases we have that

action BeginCasti is executed by time max{7‘ + 2d; ti� + 2‘}.
Hence we have proved that action BeginCasti is executed in � by time T

i
� .

Next lemma gives a bound for the time that elapses between the execution of the
BeginCasti action and the RndSuccessi action for a successful round in a stable exe-
cution fragment.

Lemma 13. Suppose that for an execution fragment � of the system SBPX; starting
in a reachable state s in which s:Decision= nil; then it holds that:
(i) � is stable;
(ii) � is a unique-leader execution; with process i leader;
(iii) � lasts for more than 5‘ + 2d time;
(iv) the action that brings the system into state s is action BeginCasti for some

round r;
(v) round r is successful.
Then we have that action RndSuccessi is performed by time 5‘+2d from the begin-
ning of �.

Proof. First notice that SBPX is the composition of CHANNELi; j and other automata.
Hence, by Theorem 3 we can apply Lemmas 1 and 4. Since the execution is stable, it
is also regular, and thus by Lemma 1 actions of BPLEADERi and BPAGENTi are executed
within ‘ time and by Lemma 4 messages are delivered within d time.
Action BeginCasti puts “Begin” messages for round r in OutMsgsi. By the code

of BPLEADERi (see tasks and bounds) each one of these messages is put on CHANNELi; j

by means of action Sendi; j in at most ‘ time. By Lemma 4 a “Begin” message is
delivered to each agent j, i.e., action Receivei; j is executed, within d time. By the code
of BPAGENT|j (see tasks and bounds) action Acceptj is executed within ‘ time. This
action puts an “Accept” message in OutMsgsj. By the code of BPAGENTj the “Accept”
message is put on CHANNELj; i, i.e., action Sendj; i for this message is executed, within ‘

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 79

time. By Lemma 4 the message is delivered, i.e., action Receivej; i for that message is
executed, within d time. By the code of BPLEADERi action GatherAccepti is executed for
a majority of the “Accept” messages within additional ‘ time. At this point variable
Decisioni is de�ned and action RndSuccessi is executed within ‘ time. Summing up
all the times we have that the round ends within 5‘ + 2d.

We can now easily prove a time bound on the time needed to complete a round.

Lemma 14. Suppose that for an execution fragment � of the system SBPX; starting
in a reachable state s in which s:Decision= nil; then it holds that
(i) � is stable;
(ii) � is a unique-leader execution; with process i leader;
(iii) � lasts for more than T i� + 5‘ + 2d;
(iv) the action that brings the system into state s is action NewRound i for some

round r;
(v) round r is successful.
Then we have that action BeginCasti for round r is executed within time T

i
� of the

beginning of � and action RndSuccessi is executed by time T i� + 5‘ + 2d of the
beginning of �.

Proof. Follows from Lemmas 12 and 13.

The previous lemma states that in a stable execution a successful round is conducted
within some time bound. However, it is possible that even if the system executes nicely
from some point in time on, no successful round is conducted and to have a successful
round a new round must be started. We take care of this problem in the next section.
We will use a more re�ned version of Lemma 14; this re�ned version replaces condition
(v) with a weaker requirement. This weaker requirement is enough to prove that the
round is successful.

Lemma 15. Suppose that for an execution fragment � of SBPX; starting in a reachable
state s in which s :Decision= nil; then it holds that
(i) � is nice;
(ii) � is a unique-leader execution; with process i leader;
(iii) � lasts for more than T i� + 5‘ + 2d time;
(iv) the action that brings the system into state s is action NewRoundi for some

round r;
(v) there exists a set J⊆I of processes such that every process in J is alive

and J is a majority; for every j∈J; s :Commitj6r and in state s for every
j∈J and k ∈I; CHANNELk; j and InMsgsj do not contain any “Collect” message
belonging to any round r′¿r.

Then we have that action BeginCasti is performed by time T i� and action RndSuccessi
is performed by time T i� + 5‘ + 2d from the beginning of �.

80 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Proof. Process i sends a “Collect” message which is delivered to all the alive voters.
All the alive voters, and thus all the processes in J, respond with “Last” messages
which are delivered to the leader. No process j∈J can be committed to reject round r.
Indeed, by assumption, process j is not committed to reject round r in state s and
process j cannot commit to reject round r. The latter is due to the fact that in state s
no message that can cause process j to commit to reject round r is either in InMsgsj
nor in any channel to process j, and in � the only leader is i, which only sends
messages belonging to round r. Since J is a majority, the leader receives at least
a majority of “Last” messages and thus it is able to proceed with the next step of
the round. The leader sends a “Begin” message which is delivered to all the alive
voters. All the alive voters, and thus all the processes in J, respond with “Accept”
messages since they are not committed to reject round r. Since J is a majority, the
leader receives at least a majority of “Accept” messages. Therefore given that � lasts
for enough time round r is successful.
Since round r is successful, the lemma follows easily from Lemma 14.

6.3. Automaton SPAX

To reach consensus using SBPX, rounds must be started by an external agent by
means of the NewRoundi action that makes process i start a new round. In this section
we provide automata STARTERi that start new round. Composing STARTERi with SBPX we
obtain SPAX.
The system SBPX guarantees that running rounds does not violate agreement and

validity, even if rounds are started by many processes. However, since running a new
round may prevent a previous one from succeeding, initiating too many rounds is not a
good idea. The strategy used to initiate rounds is to have a leader election algorithm and
let the leader initiate new rounds until a round is successful. We exploit the robustness
of BASICPAXOS in order to use the sloppy leader elector provided in Section 5. As long
as the leader elector does not provide exactly one leader, it is possible that no round
is successful, however agreement and validity are always guaranteed. This means that
regardless of termination, in any run of the algorithm no two di�erent decisions are
ever made and any decision is equal to some input value. Moreover, when the leader
elector provides exactly one leader, if the system SBPX is executing a nice execution
fragment then a round is successful.
Automaton STARTERi takes care of the problem of starting new rounds. This automaton

interacts with LEADERELECTORi by means of the Leaderi and NotLeaderi actions and with
BASICPAXOSi by means of the NewRoundi, Gathered(v)i, Continuei and RndSuccess(v)i
actions. Fig. 5, given at the beginning of the section, shows the interaction of the
STARTERi automaton with the other automata.
The code of automaton STARTERi is shown in Figs. 16 and 17. Automaton STARTERi

does the following. Whenever process i becomes leader, the STARTERi automaton starts
a new round by means of action NewRoundi. Moreover the automaton checks that
action BeginCasti is executed within the expected time bound (given by Lemma 14).

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 81

If BeginCasti is not executed within the expected time bound, then STARTERi starts a new
round. Similarly once BeginCasti has been executed, the automaton checks that action
RndSuccess(v)i is executed within the expected time bound (given by Lemma 14).
Again, if such an action is not executed within the expected time bound, STARTERi starts
a new round. We remark that to check for the execution of BeginCasti, the automaton
actually checks for the execution of action Gathered(v)i. This is because the expected
time of execution of BeginCasti depends on whether an initial value is already available
when action Gathered(v)i is executed. If such a value is available when Gathered(v)i
is executed then BeginCasti is enabled and is expected to be executed within ‘ time
of the execution of Gathered(v)i. Otherwise the leader has to wait for the execution
of action Init(v)i which enables action Continuei and action BeginCasti is expected to
be executed within ‘ time of the execution of Continuei.
In addition to the code we provide some comments about the state variables and

the actions. Variables IamLeaderi and Statusi are self-explanatory. Variable Starti
is true when a new round needs to be started. Variable RndSuccessi is true when a
decision has been reached. Variables DlineGati and DlineSuci are used to check for
the execution of actions Gathered(v)i and RndSuccess(v)i. They are also used, together
with variable LastNRi, to impose time bounds on enabled actions.
Automaton STARTERi updates variable IamLeaderi according to the input actions

Leaderi and NotLeaderi and executes internal and output actions whenever it is the
leader. Variable Start is used to start a new round and it is set either when a Leaderi
action changes the leader status IamLeader from false to true, that is, when the
process becomes leader or when the expected time bounds for the execution of actions
Gathered(v)i and RndSuccess(v)i elapse without the execution of these actions. Vari-
able RndSuccessi is updated by the input action RndSuccess(v)i. Action NewRoundi
starts a new round. Actions CheckGatheredi and CheckRndSuccessi check, respectively,
whether actions Gathered(v)i and RndSuccess(v)i are executed within the expected time
bounds. Using an analysis similar to the one done in the proof of Lemma 12 we have
that action Gathered(v)i is supposed to be executed within 6‘ + 2d time of the start
of the round. The time bound for the execution of action RndSuccess(v)i depends on
whether the leader has to wait for an Init(v)i event. However by Lemma 13 action
RndSuccess(v)i is expected to be executed within 5‘ + 2d time from the time of oc-
currence of action BeginCasti and action BeginCasti is executed either within ‘ time
of the execution of action Gathered(v)i, if an initial value is available when this action
is executed, or else within ‘ time of the execution of action Continuei. Hence actions
Gathered(v)i and Continuei both set a deadline of 6‘+ 2d for the execution of action
RndSuccess(v)i. Actions CheckGatheredi and CheckRndSuccessi start a new round if
the above deadlines expire.

6.4. Correctness and analysis of SPAX

Even in a nice execution fragment a round may not reach success. This is possi-
ble when agents are committed to reject the �rst round started in the nice execution

82 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

STARTERi

Signature:

Input: Leaderi, NotLeaderi, Stopi, Recoveri,
Gathered(v)i, Continuei, RndSuccess(v)i

Internal: CheckGatheredi, CheckRndSuccessi
Output: NewRoundi
Time-passage: �(t)

State:

Clock ∈R init. arbitrary
Status∈{alive; stopped} init. alive
IamLeader, a boolean init. false
Start, a boolean init. false

DlineSuc∈R∪{∞} init. nil
DlineGat∈R∪{∞} init. nil
LastNR∈R∪{∞} init. ∞
RndSuccess, a boolean init. false

Actions:
input Stopi
E�: Status := stopped

input Recoveri
E�: Status := alive

input Leaderi
E�: if Status= alive then

if IamLeader= false then
IamLeader := true

if RndSuccess= false then
Start := true

DlineGat :=∞
DlineSuc :=∞
LastNR :=Clock + ‘

input NotLeaderi
E�: if Status= alive then

LastNR :=∞
DlineSus :=∞
DlineGat :=∞
IamLeader := false

output NewRoundi
Pre: Status= alive

IamLeader= true

Start= true

E�: Start := false

DlineGat :=Clock + 6‘ + 2d
LastNR :=∞

input Gathered(v)i
E�: if Status= alive then

DlineGat :=∞
if v 6= nil then
DlineSuc :=Clock + 6‘ + 2d

input Continuei
E�: if Status= alive then

DlineSuc :=Clock + 6‘ + 2d

Fig. 16. Automaton STARTER for process i (part 1).

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 83

STARTERi (cont’d)

input RndSuccess(v)i
E�: if Status= alive then

RndSuccess := true

DlineGat :=∞
DlineSuc :=∞
LastNR :=∞

internal CheckGatheredi
Pre: Status= alive

IamLeader= true

DlineGat 6= nil

Clock¿DlineGat
E�: DlineGat :=∞

Start := true

LastNR :=Clock + ‘

internal CheckRndSuccessi
Pre: Status= alive

IamLeader= true

DlineSuc 6= nil

Clock¿DlineSuc
E�: DlineSuc :=∞

Start := true

LastNR :=Clock + ‘

time-passage �(t)
Pre: none
E�: if Status= alive then

Let t′ be such that
Clock + t′6LastNR
and Clock + t′6DlineGat + ‘
and Clock + t′6DlineSuc + ‘

Clock :=Clock + t′

Fig. 17. Automaton STARTER for process i (part 2).

fragment because they are committed for higher numbered rounds started before the
beginning of the nice execution fragment. However, in such a case a new round is
started and there is nothing that can prevent the success of the new round. Indeed in
the newly started round, alive processes are not committed for higher numbered rounds
since during the �rst round they inform the leader of the round number for which they
are committed and the leader, when starting a new round, always uses a round number
greater than any round number ever seen. In this section we will prove that in a long
enough nice execution fragment termination is guaranteed.
Remember that SPAX is the system obtained by composing system SLEA with one

automaton BASICPAXOSi and one automaton STARTERi for each process i∈I. Since this
system contains as a subsystem the system SBPX, it guarantees agreement and validity.
However, in a long enough nice execution fragment of SPAX termination is achieved,
too.
The following lemma states that in a long enough nice, unique-leader execution, the

leader reaches a decision. We recall that T i� = max{7‘+2d; ti�+2‘} and that ti� is the
time of occurrence of action Init(v)i in � (see De�nition 6:15).

Lemma 16. Suppose that for an execution fragment � of SPAX; starting in a reachable
state s in which s :Decision= nil; then it holds that
(i) � is nice;
(ii) � is a unique-leader execution; with process i leader;

84 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

(iii) � lasts for more than T i� + 20‘ + 7d time.
Then by time T i� + 20‘ + 7d the leader i has reached a decision.

Proof. First we notice that system SPAX contains as subsystem SBPX; hence by using
Theorem 3, the projection of � on the subsystem SBPX is actually an execution of SBPX
and thus Lemmas 14 and 15 are still true in �.
For simplicity, in the following we assume that T i� =0, i.e., that process i has exe-

cuted an Init(v)i action before �. At the end of each case we consider, we will add T i�
to the time bound to take into account the possibility that process i has to wait for an
Init(v)i action. Notice that T i� =0 implies that T

i
�=0 for any fragment � of � starting

at some state of � and ending in the last state of �.
Let s′ be the �rst state of � such that no “Collect” message sent by a process k 6= i

is present in CHANNELk; j nor in InMsgsj for any j. State s
′ exists in � and its time

of occurrence is less or equal to d + ‘. Indeed, since the execution is nice, all the
messages that are in the channels in state s are delivered by time d and messages
present in any InMsgs set are processed within ‘ time. Since i is the unique leader,
in state s′ no messages sent by a process k 6= i is present in any channel nor in any
InMsgs set. Let �′ be the fragment of � beginning at s′. Since �′ is a fragment of �,
we have that �′ is nice, process i is the unique leader in �′ and T i�′ =0.
If process i has started a round r′ by state s′ and round r′ is successful, then round

r′ ends by time T i�′ + 5‘ + 2d=5‘ + 2d in �
′. Indeed if the action that brings that

system in state s′ is a NewRoundi action for round r′ then by Lemma 14 we have
that the round ends by time T i�′ +5‘+2d=5‘+2d. If action NewRoundi for round r

′

has been executed before, round r′ ends even more quickly and the time bound holds
anyway. Since the time of occurrence of s′ is less or equal to ‘ + d we have that
round r′ ends by time 6‘ + 3d. Considering the possibility that process i has to wait
for an Init(v)i action we have that round r′ ends by time T i� + 6‘ + 3d in �. Hence
the lemma is true in this case.
Assume that either (a) process i has started a round r′ by state s′ but round r is

not successful or (b) that process i has not started any round by state s′. In both
cases process i executes a NewRoundi action by time T i�′ + 7‘ + 2d=7‘ + 2d in
�′. Indeed in case (a), by the code of STARTERi, action CheckRndSuccessi is executed
within T i�′ + 6‘ + 2d=6‘ + 2d time and it takes additional ‘ time to execute action
NewRoundi. In case (b), by the code of BPLEADERi, action NewRoundi is executed
within ‘ time. Let r′′ be the round started by such an action.
Let s′′ be the state after the execution of the NewRoundi action and let �′′ be the

fragment of � starting in s′′. Since �′′ is a fragment of �, we have that �′′ is nice,
process i is the unique leader in �′′ and T i�′′ =0. We notice that since the time of
occurrence of state s′ is less or equal to ‘+ d the time of occurrence of s′′ is less or
equal to 8‘ + 3d in �.
We now distinguish two possible cases.
Case 1: Round r′′ is successful. In this case, by Lemma 14 we have that round r′′

is successful within T i�′′ +5‘+2d=5‘+2d time in �
′′. Since the time of occurrence

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 85

of s′′ is less or equal to 8‘ + 3d, we have that round r′′ ends by time 13‘ + 5d in
�. Considering the possibility that process i has to wait for an Init(v)i action we have
that round r′′ ends by time T i� + 13‘+ 5d in �. Hence the lemma is true in this case.
Case 2. Round r′′ is not successful. By the code of STARTERi, action NewRoundi is

executed within T i�′′ +7‘+2d=6‘+2d time in �
′′. Indeed, it takes T i�′′ +5‘+2d to

execute action CheckRndSuccessi and additional ‘ time to execute action NewRoundi.
Let r′′′ be the new round started by i with such an action, let s′′′ be the state of the
system after the execution of action NewRoundi and let �′′′ be the fragment of �′′

beginning at s′′′. The time of occurrence of s′′′ is less or equal than 15‘ + 5d in �.
Clearly �′′′ is nice, process i is the unique leader in �′′′. Any alive process j that

rejected round r′′ because of a round r̃, r̃¿r′′, has responded to the “Collect” message
of round r′′, with a message 〈r′′;“OldRound”, r̃〉j; i informing the leader i about round r̃.
Since �′′ is nice all the “OldRound” messages are received before state s′′′. Since action
NewRoundi uses a round number greater than all the ones received in “OldRound”
messages, we have that for any alive process j, s′′′:Commitj¡r′′′. Let J be the set
of alive processes. In state s′′′, for every j∈J and any k ∈I, CHANNELk; j does not
contain any “Collect” message belonging to any round r̃¿r′′′ nor such a message is
present in any InMsgsj set (indeed this is true in state s

′). Finally, since �′′ is nice,
by de�nition of nice execution fragment, we have that J contains a majority of the
processes.
Hence, we can apply Lemma 15 to the execution fragment �′′′. By Lemma 15, round

r′′′ is successful within T i�′′′+5‘+2d=5‘+2d time from the beginning of �′′′. Since
the time of occurrence of s′′′ is less or equal to 15‘ + 5d in �, we have that round
r′′′ ends by time 20‘+ 7d in �. Considering the possibility that process i has to wait
for an Init(v)i action we have that round r′′′ ends by time T i� + 20‘+ 7d in �. Hence
the lemma is true also in this case.

If the execution is stable for enough time, then the leader election eventually elects
a unique leader (Lemma 7). In the following theorem we consider a nice execution
fragment � and we let i be the process eventually elected unique leader. We recall that
ti� is the time of occurrence of action Init(v)i in � and that ‘ and d are constants.

Theorem 17. Let � be a nice execution fragment of SPAX starting in a reachable state
and lasting for more than ti� + 35‘+ 13d. Then the leader i executes Decide(v

′)i by
time ti� + 32‘+ 11d from the beginning of �. Moreover by time ti� + 35‘+ 13d from
the beginning of � any alive process j executes Decide(v′)j.

Proof. Since SPAX contains SLEA and SBPX as subsystems, by Theorem 3 we can use
any property of SLEA and SBPX. Since the execution fragment is nice (and thus stable),
by Lemma 7 there is a unique leader by time 4‘+2d. Let s′ be the �rst unique-leader
state of � and let i be the leader. By Lemma 7 the time of occurrence of s′ before or at
time 4‘+2d. Let �′ be the fragment of � starting in state s′. Since � is nice, �′ is nice.
By Lemma 16 we have that the leader reaches a decision by time T i�′ + 20‘ + 7d

from the beginning of �′. Summing up the times and noticing that T i�′6t
i
�′ + 7‘ + 2d

86 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

and that ti�′6t
i
� we have that the leader reaches a decision by time t

i
� + 31‘ + 11d.

Within additional ‘ time action Decide(v′)i is executed.
The leader reaches a decision by time ti� + 31‘ + 11d. By Lemma 11 we have that

a decision is reached by every alive process j within additional 3‘ + 2d time, that is
by time ti� + 34‘ + 13d. Within additional ‘ time action Decide(v

′)j is executed.

6.5. Messages

It is not di�cult to see that in a nice execution, which is an execution with no
failures, the number of messages spent in a round is linear in the number of processes.
Indeed in a successful round the leader broadcasts two messages and the agents respond
to the leader’s messages. Once the leader reached a decision another broadcast is
enough to spread this decision to the agents. It is easy to see that, if everything goes
well, at most 6n messages are sent to have all the alive processes reach the decision.
However failures may cause the sending of extra messages. It is not di�cult to

construct situations where the number of messages sent is quadratic in the number
of processes. For example if we have that before i becomes the unique leader, all
the processes act as leaders and send messages, even if i becomes the unique leader
and conducts a successful round, there are �(n2) messages in the channels which are
delivered to the agents which respond to these messages.
Automaton BPSUCCESS keeps sending messages to processes that do not acknowledge

the “Success” messages. If a process is dead and never recovers, an in�nite number of
messages is sent. In a real implementation, clearly the leader should not send messages
to dead processes.
Finally the automaton DETECTOR sends an in�nite number of messages. However the

information provided by this automaton can be used also by other applications.

6.6. Concluding remarks

The PAXOS algorithm was devised in [19]. In this section we have provided a new
presentation of the PAXOS algorithm. We conclude this section with a few remarks.
The �rst remark concerns the use of majorities for info-quorums and accepting-

quorums. The only property that is used is that there exists at least one process common
to any info-quorum and any accepting-quorum. Thus any quorum scheme for info-
quorums and accepting-quorums that guarantees the above property can be used.
As pointed out in also [21], the amount of stable storage needed can be reduced to

a very few state variables. These are the last round started by a leader (which is stored
in the CurRnd variable), the last round in which an agent accepted the value and the
value of that round (variables LastR, LastV), and the round for which an agent is
committed (variable Commit). These variables are used to keep consistency, that is, to
always propose values that are consistent with previously proposed values, so if they
are lost then consistency might not be preserved. In our setting we assumed that the
entire state of the processes is in stable storage, but in a practical implementation only
the variables described above need to be stable.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 87

A practical implementation of PAXOS should cope with some failures before aban-
doning a round. For example a message could be sent twice, since duplication is not a
problem for the algorithm (it may only a�ect the message analysis), or the time bound
checking may be done later than the earliest possible time to allow some delay in the
delivery of messages.
A recover may cause a delay. Indeed if the recovered process has a bigger identi�er

than the one of the leader then it will become the leader and will start new rounds,
possibly preventing the old round from succeeding. As suggested in Lamport’s original
paper, one could use a di�erent leader election strategy which keeps a leader as long
as it does not fail. However, it is not clear to us how to design such a strategy.

7. The MULTIPAXOS algorithm

The PAXOS algorithm allows processes to reach consensus on one value. We consider
now the situation in which consensus has to be reached on a sequence of values; more
precisely, for each integer k, processes need to reach consensus on the kth value. The
MULTIPAXOS algorithm reaches consensus on a sequence of values; it was discovered by
Lamport at the same time as PAXOS [19].
Informally, to achieve consensus on a sequence of values we can use an instance of

PAXOS for each integer k, so that the kth instance is used to agree on the kth value.
Since we need an instance of PAXOS to agree on the kth value, we need for each integer
k an instance of the BASICPAXOS and STARTER automata. To distinguish instances we use
an additional parameter that speci�es the ordinal number of the instance. So, we have
BASICPAXOS(1), BASICPAXOS(2), BASICPAXOS(3), etc., where BASICPAXOS(k) is used to agree
on the kth value. This additional parameter will be present in each action. For instance,
the Init(v)i and Decide(v′)i actions of process i become Init(k; v)i and Decide(k; v′)i
in BASICPAXOS(k)i. Similar modi�cations are needed for all other actions. The STARTERi
automaton for process i has to be modi�ed in a similar way. Also, messages belonging
to the kth instance need to be tagged with k.
This simple approach has the problem that an in�nite number of instances must be

started unless we know in advance how many instances of PAXOS are needed. Hence it
is not practical. Furthermore, we have not de�ned the composition of Clock GTAs for
an in�nite number of automata (see Section 2).
We can follow a di�erent approach consisting in modifying the BASICPAXOS and

STARTER automata of PAXOS to obtain the MULTIPAXOS algorithm. This di�ers from the
approach described above because we do not have separate automata for each single
instance. The MULTIPAXOS algorithms takes advantage of the fact that, in a normal
situation, there is a unique leader that runs all the instances of PAXOS. The leader can
use a single message for step 1 of all the instances. Similarly step 2 can also be handled
grouping all the instances together. As a consequence, less messages are used. Then,
from step 3 on each instance must proceed separately; however step 3 is performed
only when an initial value is provided.

88 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

Though the approach described above is conceptually simple, it requires some change
to the code of the automata we developed in Section 6. To implement MULTIPAXOS we
need to modify BASICPAXOS and STARTER. Indeed BASICPAXOS and STARTER are designed
to handle a single instance of PAXOS, while now we need to handle many instances all
together for the �rst two steps of a round. As the changes to the automata code are
only technical, we do not provide the modi�ed code; however we refer the interested
reader to [5].
The correctness follows from the correctness of PAXOS. Indeed for every instance of

PAXOS, the code of MULTIPAXOS provided in this section does exactly the same thing
that PAXOS does; the only di�erence is that Step 1 (as well as Step 2) is handled in a
single shot for all the instances. It follows that Theorem 17 can be restated for each
instance k of PAXOS.

8. Application to data replication

Providing distributed and concurrent access to data objects is an important issue in
distributed computing. The simplest implementation maintains the object at a single
process which is accessed by multiple clients. However, this approach does not scale
well as the number of clients increases and it is not fault-tolerant. Data replication
allows faster access and provides fault tolerance by replicating the data object at several
processes.
One of the best known replication techniques is majority voting (e.g., [15, 16]). With

this technique both update (write) and non-update (read) operations are performed at
a majority of the processes of the distributed system. This scheme can be extended
to consider any “write quorum” for an update operation and any “read quorum” for
a non-update operation. Write quorums and read quorums are just sets of processes
satisfying the property that any two quorums, one of which is a write quorum and
the other one is a read quorum, intersect (e.g., [12]). A simple quorum scheme is the
write-all=read-one scheme (e.g., [3]) which gives fast access for non-update operations.
Another well-known replication technique relies on a primary copy. A distinguished

process is considered the primary copy and it coordinates the computation: the clients
request operations to the primary copy and the primary copy decides which other copies
must be involved in performing the operation. The primary copy technique works
better in practice if the primary copy does not fail. Complex recovery mechanisms are
needed when the primary copy crashes. Various data replication algorithms based on
the primary copy technique have been devised (e.g., [10, 11, 23]).
It is possible to use MULTIPAXOS to design a data replication algorithm that guarantees

sequential consistency and provides the same fault tolerance properties of MULTIPAXOS.
The resulting algorithm lies between the majority voting and the primary copy tech-
niques. It is similar to voting schemes since it uses majorities to achieve consistency
and it is similar to primary copy techniques since a unique leader is required to achieve
termination. Using MULTIPAXOS gives much
exibility. For instance, it is not a disaster

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 89

when there are two or more “primary” copies. This can only slow down the computa-
tion, but never results in inconsistencies. The high fault tolerance of MULTIPAXOS results
in a highly fault tolerant data replication algorithm, i.e., process stop and recovery,
loss, duplication and reordering of messages, timing failures are tolerated.
We can use MULTIPAXOS in the following way. Each process in the system maintains a

copy of the data object. When client i requests an update operation, process i proposes
that operation in an instance of MULTIPAXOS. When an update operation is the output
value of an instance of MULTIPAXOS and the previous update has been applied, a process
updates its local copy and the process that received the request for the update gives back
a report to its client. A read request can be immediately satis�ed returning the current
state of the local copy. We refer the reader to [5] for automaton code implementing
the above algorithm.

9. Conclusion

This paper revisits Lamport’s PAXOS algorithm which is a practical and elegant algo-
rithm for solving distributed consensus. Nevertheless, it seems to be not widely known
or understood. A modular and detailed description of the algorithm is provided along
with a formal proof of correctness and a performance analysis. The formal frame-
work used is provided by the Clock GTA model which is a special I=O automaton
model suitable for practical time performance analysis based on the stabilization of the
physical system.
Possible future work encompasses an implementation of PAXOS and of data replication

algorithms based on PAXOS. We recently learned that Lee and Thekkath [22] used an
algorithm based on PAXOS to replicate state information within their Petal system which
implements a distributed �le server.

Acknowledgements

The �rst author would like to thank Idit Keidar and Sam Toueg for useful discussions
on related work.

References

[1] T.D. Chandra, V. Hadzilacos, S. Toueg, The weakest failure detector for solving consensus, J. ACM
43 (2) (1996) 685–722. A preliminary version appeared in the Proc. 11th Annual ACM Symp. on
Principles of Distributed Computing, Vancouver, British Columbia, Canada, August 1992, pp. 147–158.

[2] T.D. Chandra, S. Toueg, Unreliable failure detector for asynchronous distributed systems, J. ACM 43 (2)
(1996) 225–267. A preliminary version appeared in the Proc. 10th Annual ACM Symp. on Principles
of Distributed Computing, August 1991, pp. 325–340.

[3] E.C. Cooper, Replicated distributed programs, UCB=CSD 85=231, University of California, Berkeley,
CA, May 1985.

90 R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91

[4] F. Cristian, C. Fetzer, The timed asynchronous system model, Dept. of Computer Science, UCSD, La
Jolla, CA. Tech. Rep. CSE97-519.

[5] R. De Prisco, Revisiting the Paxos algorithm, M.S. Thesis, Massachusetts Institute of Technology, Lab.
for Computer Science, Cambridge, MA, June 1997. Tech. Rep. MIT-LCS-TR-717, Lab. for Computer
Science, MIT.

[6] R. De Prisco, B. Lampson, N. Lynch, Revisiting the Paxos algorithm, in Proc. 11th Internat. Workshop
on Distributed Algorithms, Saarbr�ucken, Germany, September 1997, pp. 111–125.

[7] D. Dolev, C. Dwork, L. Stockmeyer, On the minimal synchrony needed for distributed consensus,
J. ACM 34(1) (1987) 77–97.

[8] D. Dolev, R. Friedman, I. Keidar, D. Malkhi, Failure detectors in omission failure environments, in
Proc. 16th Annual ACM Symp. on Principles of Distributed Systems, Santa Barbara, CA, August 1997,
p. 286. Also TR 96-1608, Department of Computer Science, Cornell University, September, 1996 and
TR CS96-13, Institute of Computer Science, The Hebrew University of Jerusalem.

[9] C. Dwork, N. Lynch, L. Stockmeyer, Consensus in the presence of partial synchrony, J. ACM 35(2)
(1988) 288–323.

[10] A. El Abbadi, D. Skeen, F. Cristian, An e�cient fault-tolerant protocol for replicated data management,
Proc. 4th ACM SIGACT=SIGMOD Conf. on Principles of Database Systems, 1985.

[11] A. El Abbadi, S. Toueg, Maintaining availability in partitioned replicated databases, Proc. 5th ACM
SIGACT=SIGMOD Conf. on Principles of Data Base Systems, 1986.

[12] A. Fekete, N. Lynch, A. Shvartsman, Specifying and using a partitionable group communication service,
in Proc. 16th Annual ACM Symp. on Principles of Distributed Computing, August 1997, pp. 53–62.

[13] M.J. Fischer, The consensus problem in unreliable distributed systems (a brief survey). Rep.
YALEU=DSC=RR-273. Dept. of Computer Science, Yale Univ., New Have, Conn., June 1983.

[14] M.J. Fischer, N. Lynch, M. Paterson, Impossibility of distributed consensus with one faulty process,
J. ACM 32(2) (1985) 374–382.

[15] D.K. Gi�ord, Weighted voting for replicated data, Proc. 7th ACM Symp. on Oper. Systems Principles,
SIGOPS Oper. Systems Rev. 13 (5) (1979) 150–162.

[16] M.P. Herlihy, A quorum-consensus replication method for abstract data types, ACM Trans. Comput.
Systems 4(1) (1986) 32–53.

[17] I. Keidar, D. Dolev, E�cient message ordering in dynamic networks, in Proc. 15th Annual ACM Symp.
on Principles of Distributed Computing, May 1996, pp. 68–76.

[18] I. Keidar, D. Dolev, Increasing the resilience of distributed and replicated database systems, J. Comput.
System Sci. (JCSS), special issue with selected papers from PODS 1995, 57 (3) (1998) 309–324.

[19] L. Lamport, The part-time parliament, ACM Trans. Comput. Systems 16 (2) (1998) 133–169. Also
Research Report 49, Digital Equipment Corporation Systems Research Center, Palo Alto, CA, September
1989.

[20] B. Lampson, How to build a highly available system using consensus, in Proc. 10th Internat. Workshop
on Distributed Algorithms, Bologna, Italy, 1996, pp. 1–15.

[21] B. Lampson, W. Weihl, U. Maheshwari, Principle of Computer Systems: Lecture Notes for 6.826, Fall
1992, Research Seminar Series MIT-LCS-RSS 22, Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139, July 1993.

[22] E.K. Lee, C.A. Thekkath, Petal: distributed virtual disks, in Proc. 7th Internat. Conf. on Architectural
Support for Programming Languages and Operating Systems, Cambridge, MA, October 1996, pp. 84–92.

[23] B. Liskov, B. Oki, Viewstamped replication: A new primary copy method to support highly-available
distributed systems, in Proc. 7th Annual ACM Symp. on Principles of Distributed Computing, August
1988, pp. 8–17.

[24] N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Francisco, 1996.
[25] N. Lynch, M.R. Tuttle, An introduction to I=O automata, CWI-Quart. 2 (3) 219–246. CWI, Amsterdam,

The Netherlands, Sep 89. Technical Memo MIT-LCS-TM-373, Lab. for Computer Science, MIT,
Cambridge, MA, USA, Nov 88.

[26] N. Lynch, F. Vaandrager, Forward and backward simulations for timing-based systems. in Real-Time:
Theory in Practice, Lecture Notes in Computer Science, Vol. 600, Springer, Berlin, 1992, pp. 397–446.

[27] N. Lynch, F. Vaandrager, Forward and backward simulations – Part II: Timing-based systems, Technical
Memo MIT-LCS-TM-487.b, Lab. for Computer Science, MIT, Cambridge, MA, USA, April 1993.

[28] N. Lynch, F. Vaandrager, Actions transducers and timed automata, Technical Memo MIT-LCS-TM-
480.b, Lab. for Computer Science, MIT, Cambridge, MA, USA, October 1994.

R. De Prisco et al. / Theoretical Computer Science 243 (2000) 35–91 91

[29] M. Merritt, F. Modugno, M.R. Tuttle, Time constrained automata. CONCUR 91: 2nd Internat. Conf.
on Concurrency Theory, Lecture Notes in Computer Science, Vol. 527, Springer, Berlin, 1991, pp.
408–423.

[30] B. Oki, Viewstamped replication for highly-available distributed systems, Ph.D. Thesis, Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, 1988.

[31] B. Patt-Shamir, A theory of clock synchronization, Ph.D. Thesis, Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA 02139, October 1994.

[32] B. Patt-Shamir, S. Rajsbaum, A theory of clock synchronization, in Proc. 26th Symp. on Theory of
Computing, May 1994.

[33] M. Pease, R. Shostak, L. Lamport, Reaching agreement in the presence of faults, J. ACM 27(2) (1980)
228–234.

[34] D. Skeen, Nonblocking Commit Protocols, Proc. ACM SIGMOD Internat. Conf. on Management of
Data, May 1981, pp. 133–142.

[35] D. Skeen, D.D. Wright, Increasing availability in partitioned database systems, TR 83-581, Dept. of
Computer Science, Cornell University, Mar 1984.

