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Abstract

The Digital Distributed System Security Architec-

ture is a comprehensive speci�cation for security in a

distributed system that employs state-of-the-art con-

cepts to address the needs of both commercial and

government environments. The architecture covers

user and system authentication, mandatory and dis-

cretionary security, secure initialization and loading,

and delegation in a general-purpose computing en-

vironment of heterogeneous systems where there are

no central authorities, no global trust, and no cen-

tral controls. The architecture prescribes a frame-

work for all applications and operating systems cur-

rently available or to be developed. Because the dis-

tributed system is an open OSI environment, where

functional interoperability only requires compliance

with selected protocols needed by a given applica-

tion, the architecture must be designed to securely

support systems that do not implement or use any

of the security services, while providing extensive ad-

ditional security capabilities for those systems that

choose to implement the architecture.

1 Overview

The state of the art of computer security today is such

that reasonably secure standalone operating systems

can be built, and reasonably secure connections be-

tween the systems can be implemented. The purpose

of the Digital Distributed System Security Architec-

ture is to permit otherwise secure standalone systems

to interoperate in a distributed environment without

reducing the level of security and assurance of those

systems. By \interoperate" we mean the ability to

use, in a distributed fashion, all of the security capa-

bilities inherent in standalone systems. Users \login"

just once to the distributed system, users and ob-

jects have unique global names, and mandatory and

discretionary access will be enforced regardless of the

relative locations of the subjects and objects.

This architecture primarily addresses features

for \commercial-grade" security and lower TCSEC

[DOD85] classes up through B1. It addresses many

security needs outside the scope of the TCSEC, and

does not cover assurance requirements required by

TCSEC classes B2 through A1. However, nothing

precludes a system from implementing this architec-

ture with a level of assurance beyond B1.

The architecture makes extensive use of encryp-

tion. Con�dentiality and integrity for communication

using symmetric (secret) key cryptography is pre-

sumed to be inexpensive and pervasive. Asymmetric

(public) key cryptography is used for key distribu-

tion, authentication and certi�cation. Users authen-

ticate themselves with smart cards containing private

keys and mechanisms to calculate cryptographic al-

gorithms, and all systems possess their own private

keys to authenticate themselves to other systems.

Authentication is assisted by the use of certi�cates,

digitally signed by certifying authorities and stored in

a distributed naming service that provides a hierar-

chical name space. A certi�cation hierarchy tied to

the naming hierarchy, along with the use of certain

naming conventions, eliminates the need for global

trust or trust of the naming service. Systems that

need to act on behalf of other systems or users are

explicitly given the right to do so through certi�cates

signed by the delegating parties.

In this paper key terms de�ned here are in italics.

While most of these terms are well-known, the def-

initions here may be unconventional, di�erent from

past usage in similar contexts.

2 Security policy and reference

monitors

The traditional concept of a single security policy

and reference monitor [Ames83] for the entire com-

puter system is not practical for a distributed sys-

tem. While there are certain distributed environ-

ments where security management responsibility is

centralized, in most cases the individual systems com-

prising the distributed system must be considered to

be independently managed and potentially hostile to-

ward each other. Mutually suspicious systems should
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be required to cooperate only to the extent that they

need each other's services, and no more. Moreover,

even if we could assume that a large distributed sys-

tem were centrally managed under a single security

administrator, building a distributed reference moni-

tor to provide all the security capabilities of a single

system presents unsolved research challenges.

Rather than a common security policy and refer-

ence monitor, each system implements its own refer-

ence monitor enforcing its own policy. Each reference

monitor is responsible for controlling access to the

objects it maintains. In the most general case the

reference monitor on one system receives a request

to access one of its objects from a subject controlled

by a reference monitor on another system. Access

is permitted only if the reference monitor for the ob-

ject can verify that proper subject authentication has

taken place, that the system from which the request

is received has been duly authorized by the subject to

make that request, and that there is compatibility be-

tween the security policy of the requester's reference

monitor and that of the object's so that access rights

can be evaluated. Implicit in this compatibility is

some level of mutual trust of the reference monitors.

In today's systems, reference monitors are usually

operating systems and large subsystems or servers

that manage their own objects directly. In the fu-

ture distributed system any application may become

the reference monitor for its own set of subject and

objects. The subjects and objects controlled by such

a reference monitor may be implemented out of other

subjects and objects controlled by another underly-

ing reference monitor. Also, in certain limited cases,

several systems may \team up" to comprise a larger

system implementing a single distributed reference

monitor, all implementing exactly the same policy

and fully trusting each other. At this time the se-

curity architecture does not explicitly address the

mechanisms needed to construct composite objects

or multiple reference monitors in a computer system,

and does not impose any structure on the relationship

between reference monitors. The architecture simply

allows all reference monitors who are able to iden-

tify their own components to securely manage their

globally accessible resources in a uniform manner.

For the most part, the architecture de�nes interop-

erable security mechanisms and does not address de-

grees of assurance of reference monitors as addressed

in the TCSEC. Regardless of their assurance, it is

expected that all systems conforming to the architec-

ture will implement interoperable mechanisms. As-

surance, where important, will impose design con-

straints and methodologies on individual systems but

should not in
uence the security-related external be-

havior of those systems. For example, a security

kernel architecture might permit a reference moni-

tor to be contained within a subset of a whole oper-

ating system, allowing that system as a component

of the distributed system to be granted an A1 rat-

ing. Such a subset must implement all of the relevant

security mechanisms that might be implemented by

other (e.g., C2) systems on the distributed system

where the entire operating system acts as a reference

monitor. The architecture also permits di�erent ref-

erence monitors to have a mutual understanding of

their respective degrees of assurance and accredita-

tion ranges so that they can determine whether their

security policies are compatible.

3 Computing model

The world is made up of interconnected systems and

users. A system is comprised of hardware (e.g., a

computer) and software (e.g., an operating system),

and a system can support one or more software sys-

tems running on it. Systems implement other sys-

tems, so, for example, a computer implements an op-

erating system which implements a database manage-

ment system which implements a user query process.

In this manner, a system whose reference monitor

controls one set of objects might implement another

system with a reference monitor for another set of

objects. For purposes of the security architecture,

we rarely distinguish between the di�erent types of

software systems such as hosts, operating systems,

database management systems, servers, and applica-

tions, and we rarely need to get involved in the pos-

sible hierarchical relationship between systems built

out of underlying systems.

A user interacts physically through a keyboard and

screen that are electrically (or securely) connected to

a system: usually a workstation, timesharing system,

or terminal server. The user invokes an operating sys-

tem and applications processes on that system which

he trusts to perform work on his behalf. The work

may involve only data local to the workstation, or

may involve data on and interaction with remote ser-

vices on other systems.

All interactions, direct or indirect, between a user

and a remote system pass through the user's local

system. Therefore the local system must be trusted

to accurately convey the user's commands to the re-

mote system, and the remote system must be trusted

to implement the commands. Because the local sys-

tem has access to any remote information that the

user can access on that remote system, the user has

no choice but to trust his local system to be faithful

to his wishes.
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The remote system, in order to satisfy a user's

command, may need to forward the command, or

make an additional request, to a second remote sys-

tem. In such a case the �rst remote system must

also be trusted to accurately re
ect the user's wishes.

In general, the user may interact through a chain of

systems, where the user must trust each system in

the chain, and where communications between the

systems in the chain is assumed to be secure so that

the commands and responses are safe from alteration,

forgery or disclosure.

4 Message authentication and secure

channels

The architecture depends extensively on the use of a

message hash function that yields a message authen-

tication code (MAC), a short \digest" of a message

that is much more e�cient to communicate and store

than the original message. A good hash function has

the property that, given the MAC of one message, it

is computationally infeasible to create another mes-

sage having the same MAC. While cryptographic

MACs are frequently used where two parties already

have established a cryptographic association, mes-

sage hashes of greatest interest to the architecture are

those whose security does not depend on knowledge of

shared keys, so that anyone can check the MAC of a

message but nobody can forge another message with

the same MAC. This permits MACs of widely used

messages to be freely distributed without prior nego-

tiation of keys. An example of such a hash function is

provided in Annex D of the CCITT recommendation

X.509 [CCITT88b].

In this architecture, communicating securelymeans

satisfying one or both of the properties: (1) knowing

who originally created a message you are reading,

which we call authentication, and (2) knowing who

can read a message you create, which we call con�-

dentiality. The ISO (International Standards Orga-

nization) term \data origin authentication" [ISO88b]

is equivalent to property (1). Our concept of authen-

tication also implies \data integrity": assurance that

the message you are reading is exactly the same as

the one that was created (if the message is altered

then it's not a message from the originator).

The term \peer entity authentication", used by ISO

to describe the property that you know with whom

you are communicating, is subsumed in our architec-

ture by both properties (1) and (2). In the security

architecture it is meaningless to have \peer entity

authentication" by itself: without either con�den-

tiality or data origin authentication (with integrity)

you cannot tell whether your message is protected or

whether you are actually receiving what was sent and

so communication is not secure in any practical sense.

ISO's de�nition of \con�dentiality" is also not

strictly the same as ours, as we assume that the re-

cipient is known and must therefore have been au-

thenticated at some time in the past.

The concept of a secure channel, introduced by Bir-

rell, et al. [Birrell86], is an abstract way of viewing

how we accomplish properties (1) and (2). A channel

is a path by which two or more entities communicate.

A secure channel may be a protected physical path

(e.g., a physical wire, a disk drive and medium) or

an encrypted logical path. A channel need not be

real time: a message written on a channel may not

be read until sometime later. A secure channel pro-

vides either authentication or con�dentiality, or both,

while an insecure channel provides neither. Commu-

nication via insecure channels is permitted but is not

addressed by the architecture.

Secure channels have identi�ers known to the

senders and the receivers. A secure physical chan-

nel is identi�ed by a hardware address such as an

I/O port number on a computer or a disk drive and

block number. An encryption channel is identi�ed by

an encryption key. Any message encrypted under a

given key is said to be written on the channel identi-

�ed by that key, regardless of whether that message

is \sent" anywhere. When the message is decrypted

it is said to be read from the channel. The ciphertext

of an encrypted message may be written on another

channel before being decrypted: typically the cipher-

text is written on an insecure channel for transmis-

sion, read from the insecure channel, and �nally read

from the secure channel by decryption.

For a secure channel that provides authentication,

the senders are known to the receivers and are thus

authenticated. Speci�cally, a receiver of a message

on a secure channel can determine that the message

was written by someone in a known set of senders.

If there is more than one possible sender then, in or-

der to determine the actual sender, the receiver must

trust the senders to cooperate by properly identifying

themselves within the text of the message or by not

sending unless requested.

For a secure channel that provides con�dentiality,

the receivers are known to the senders and are au-

thorized by the senders to receive the information.

In most cases there is usually only one possible re-

ceiver. If there is more than one, and the sender

wants to limit the message to a speci�c receiver, then

the sender must trust the other receivers not to read

messages unintended for them.

A symmetric key channel (identi�ed by a secret en-

cryption key) provides con�dentiality and, can pro-
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vide authentication with the use of a MAC for in-

tegrity. For a symmetric key channel all authorized

senders and receivers must share the same key, and

therefore all senders and receivers are in the set au-

thorized to read or write information on the channel.

An asymmetric key channel (identi�ed by either

its private or public key) provides authentication if a

message is encrypted with the private key, or con�-

dentiality if a message is encrypted with the public

key. A single encryption operation cannot provide

both properties (even though a single public/private

key pair can provide both). Typically there is a

unique pair of keys for each principal. The principal

keeps its private key con�dential and the public key

is made generally available (online or through some

directory service). This and the following description

of asymmetric key channels primarily applies to the

RSA public key algorithm [Rivest78].

In an asymmetric key channel used for authenti-

cation, the sender creates a \digital signature" of

the message by encrypting the MAC of the message

using the sender's private key, and sends the sig-

nature along with the original (plaintext) message.

Any recipient who knows the sender's public key can

verify the signature by recalculating the MAC and

comparing it to the decrypted signature, to deter-

mine whether the original message was signed by the

sender. The sender is authenticated to the receiver

because only the sender knows the private key used

to sign the MAC.

It is impractical for all entities in the distributed

system to know the correct public keys of all other

entities with which they want to communicate. En-

tities are typically identi�ed using network addresses

or names expressed as character strings. A special

kind of signed message, termed a certi�cate, is used

to unforgeably associate the name of an entity with

its public key. Certi�cates also have a number of re-

lated functions as described below.

In an asymmetric key channel used for con�den-

tiality, a sender encrypts a message with a receiver's

public key which only the single receiver can decrypt

with the private key. The sender's message is thus

con�dential. Since anyone can encrypt a message

with someone's public key this channel does not pro-

vide authentication of the sender. To provide both

authentication and con�dentiality, a message must

be �rst signed with the sender's private key and the

result encrypted with the receiver's public key. In

practice, both steps are rarely applied to the same

message, and in fact the architecture rarely needs to

make use of asymmetric key cryptography for con�-

dentiality.

The most popular algorithm for symmetric key en-

cryption is the Data Encryption Standard (DES).

However, the DES algorithm is not speci�ed by the

architecture and, for export reasons, ability to use

other algorithms is a requirement. The preferred al-

gorithm for asymmetric key cryptography, and the

only known algorithm with the properties required

by the architecture, is RSA. As with DES, the ar-

chitecture does not specify and will not depend on

the details of the RSA algorithm; another algorithm

with similar properties, if invented in the future, is

permitted.

Access control does not apply to secure encryption

channels: a secure encryption channel as de�ned in

the architecture is created when needed and is not a

limited resource or object to be protected. Access to

the channel is determined by those who possess the

encryption keys. A physical channel (whether or not

it is used for security) is a limited resource to which

access may need to be controlled. In such a case

the channel would be treated as an object, with an

ACL (see section 7) and perhaps mandatory access

controls.

When two systems interact through a secure en-

cryption channel (e.g., two nodes on di�erent LANs

using end-to-end encryption across a wide area net-

work), there may be many intermediate systems

(gateways, bridges or routers, etc.) in the path be-

tween the end systems. These intermediate systems

are needed to support communications for the appli-

cations in the end systems but need not be trusted to

keep the channel secure. Intermediaries in a secure

physical channel, on the other hand) must be trusted.

For some applications involving several systems

there are a number of secure channels between pairs

of systems participating in the application. For ex-

ample, consider a user on a workstation who sub-

mits a query that gets forwarded to a remote DBMS

which accesses a record in a �le on a �le server. In

this example the DBMS system is an endpoint of one

secure channel (from the workstation) and an origi-

nating point for a second secure channel (to the �le

server). Normally all three systems must be trusted

by the user because the DBMS processes both the

query and the results being returned and there is no

secure channel directly from the user's workstation to

the �le server. On the other hand, if the �le server en-

crypts (and integrity-protects) a record that it hands

to the DBMS, and the DBMS simply forwards the

record to the user's workstation for decryption, then

there is a secure channel between the �le server and

workstation and the user does not need to trust the

DBMS to protect that record from disclosure or un-

detected modi�cation.

In the context of communications it is simplest to
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think of secure channels as secure transport layer con-

nections providing con�dentiality and integrity of the

data, even though transport is not the only place

where there may be secure communications. In the

context of authentication a secure channel is usually

something de�ned by a given encryption key that is

used to pass signed messages.

At this time, the architecture is not tied to any

speci�c protocol suite. The detailed speci�cations

of protocols, to be prepared eventually, will describe

how to set up secure channels using speci�c network

protocols.

5 Computers and loading

A computer is a system made up of a particular phys-

ical set of hardware components running some boot

code. All connections between the computer and the

rest of the world must be through secure channels.

An engine is a hardware or software device created

by a system that can be loaded with a program to

produce another system. The computer running its

boot code provides an engine into which an operating

system can be loaded, thereby creating what we com-

monly refer to as a host or node. Another example

of an engine is a process provided by an operating

system. When loaded with an application program,

the running process becomes a system. These rela-

tionships are illustrated in �gure 1.

A speci�cation is a description of a system's be-

havior (e.g., the speci�c behavior of a VAX 6250

computer or that of VMS 5.0, documented in some

manual). While a speci�cation is rarely written down

precisely, users of (or systems interacting with) a sys-

tem that is \certi�ed" to meet a given speci�cation

can be assured that the system will behave as they

expect. The architecture deals with the problems

of certifying a system and determining whether that

certi�cation was done by someone you trust. Cer-

tifying a system does not have anything to do with

software correctness|certifying that a system meets

the \VMS 5.0 speci�cation" simply means knowing

that a speci�c program (the \VMS 5.0 boot image")

was loaded into a speci�c type of system (a \VAX

computer") using speci�c sysgen parameters. It is

assumed that the particular boot image does what

is intended|proving that the program in fact meets

some written speci�cation is outside the scope of the

architecture.

In general, software is certi�ed by the system load-

ing the engine it has created, by verifying that the

MAC of the software image is equal to the expected

value for that software's speci�cation. For example,

if the MAC of an image you have just loaded is equal

to the MAC you expect for \VMS 5.0 boot image"

then you can be con�dent that you have just loaded

a program that will behave according to the \VMS

5.0 speci�cation." The MACs of various images that

may be loaded into a given system are contained in

certi�cates.

Each system, including the computer hardware

itself, has a secret (the private portion of a pri-

vate/public cryptographic key pair), generated ran-

domly when the system is installed or created, which

it uses to authenticate itself and to certify systems it

creates. A system is responsible for protecting its se-

cret from disclosure to the created systems. Through

chains of reasoning beginning with the computer and

ending with an application system (for example) it is

possible to certify any desired aspect of a system or

its behavior. In contrast to software systems' secrets

which are created each time the system is rebooted,

computer secrets are semi-permanent, stored in pro-

grammable read-only memory.

When a computer is asked to boot some software,

the boot hardware in the computer (usually imple-

mented as software in read-only memory) calculates a

MAC of the operating system that it has loaded, and,

before permitting execution, veri�es (by checking cer-

ti�cates received with the boot image or provided to

it by system management) that an operating system

with the designated MAC is permitted to run on that

computer. If veri�ed, the boot hardware generates a

private/public key for use by the loaded operating

system, signs, using its boot secret, a certi�cate asso-

ciating the MAC with the new public key, deletes the

boot secret from any place that operating system can

get to, and then begins execution of the loaded op-

erating system. The operating system, in turn, uses

its new private key as a secret to sign for other sys-

tems (applications) that it loads, and so on. When

asked to authenticate itself to a remote system, the

operating system presents as credentials its certi�cate

signed by the computer. In this manner, with mini-

mal new mechanisms in the hardware, the computer

has protected itself from being loaded with malicious

software, and other systems who trust the computer's

boot hardware can verify the identity of the loaded

operating system. Of course, if the operating system

is compromised after it starts running nobody may

�nd out. Techniques to insure that the operating

system is able to pretect itself and remain in secure

state after it starts running are addressed by oper-

ating system security mechanisms and are outside of

the Distriuted System Security Architecture.
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Figure 1: Computers, systems, programs and engines.

6 Naming

A principal is an entity that can be granted access to

objects or can make statements a�ecting access con-

trol decisions. Principals are subjects in the TCSEC

sense, but not all subjects are principals. For exam-

ple, a principal may spawn multiple process within

a system, each one identi�ed as its own subject to

the operating system, but the architecture treats each

of these subjects as if they were the original princi-

pal and makes no attempt to isolate them from each

other. When a principal accesses an object the ref-

erence monitor for the principal in control of the ob-

ject must have some way of identifying the requesting

principal, and this identi�cation is in the form of a

unique global identi�er. These global identi�ers are

Digital Naming Service (DNS) names.

Users and systems (nodes, servers, etc.) are named

principals who have DNS names. There are also prin-

cipals such as smart cards, processes, and sessions

that do not have DNS names and that always act on

behalf of other (named) principals. The use of DNS is

pervasive in the architecture, but the primary reason

for DNS names is so that users can identify principals

and can enter their names on access control lists (see

section 7). Without DNS names, users would have to

identify principals with unwieldy cryptographic keys.

DNS has a hierarchical tree structure, with a sin-

gle root at the top and directories at the branches.

A principal's name lies within some directory and

the principal always knows (or can determine) its

place in the hierarchy from the root; the series of

directory names from the root down to the prin-

cipal is the principal's DNS name. In �gure 2,

for example, the full DNS name of principal P8 is

.TOP.MID-1.LOW.BOT.P8. While DNS names are

human-readable, it is not expected that people will

have to type a full DNS name very often. The DNS

structure and the services provided by DNS are very

similar to the directory proposed by CCITT and ISO

[CCITT88a].

TOP

�
��P1 �
��P2 MID-1

LOW

�
��P4 BOT

�
��P6 �
��P7 �
��P8

Directoryd Principal

�
��P5

�
��P3

MID-2

�
��P9 �
��P10

Figure 2: Example of DNS hierarchy.

Principals, and even large sections of the hierarchy

(subtrees), may be moved from one place in the tree

to another as organizational and other associations

change. This means that a principal's name (usually,

just the directories in a principal's name) can change,

perhaps without the principal's awareness. When a

subtree is moved a symbolic link may be placed at

the old location's parent directory that points to the

new location of the subtree, thereby permitting prin-

cipals to be found using their old names (see �gure

3). Symbolic links serve a number of other purposes

not related to security.

Because of symbolic links, a principal may be iden-

ti�ed by several DNS names, only one of which is the

true name. In �gure 3, the principal originally known

by the name .TOP.MID-1.LOW.BOT.P8 in �gure 2 is

now located at .TOP.MID-2.NEWBOT.P8, and may

be referenced by either name due to the presence of

the symbolic link at the old location of the BOT direc-

tory. To provide a fast way to determine whether two

names refer to the same principal (something that the

access control mechanism must be able to do) a prin-

cipal also has a unique-identi�er (UID) which doesn't
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Figure 3: Symbolic link in DNS.

change even if the DNS name of a principal changes.

The UID is stored in DNS in the directory entry for

the principal, and plays an additional role in the re-

assignment of names and de�nition of the directory

hierarchy. With minor exceptions, the UID is used

by the security architecture for performance rather

than for security. Thus, the algorithm for enforcing

uniqueness of UIDs is outside the architecture. In

a few cases where security depends on uniqueness of

UIDs, there are simple ways to enforce it.

Except for the names, UIDs and symbolic links,

other aspects of the DNS architecture are not rele-

vant to the security architecture and security (except

certain types of revocation described in section 11)

does not depend on correct functioning of the DNS

servers. Of course, if DNS does not function correctly

availability might su�er.

7 Access control

All information to which access is controlled is con-

tained in objects. All objects have access control lists

(ACLs): lists of principals (identi�ed by DNS name)

who may have access to the object, along with their

access rights. There are a small number of architec-

turally de�ned access rights, such as \read," \write,"

etc., and some number of system-de�ned rights. It is

the responsibility of the system (the reference mon-

itor) controlling an object to enforce the ACL. An

operating system, for example, enforces the ACLs for

the �les in its �le system. The principal that controls

an object is not listed on the ACL.

ACLs may contain names of groups of principals.

Groups are objects with DNS names and may be cre-

ated and modi�ed by ordinary users, not just by sys-

tem managers. All groups must exist as an explicit

list of principals|there is no architectural support

for \implicit" groups identi�ed through some kind

of naming convention (for example, \all principals

contained in a given directory") but implementing

such a capability is not precluded. However, large

groups may be constructed out of smaller groups:

groups may be nested (may name other groups) to

an arbitrary depth. The ability to e�ciently support

both very small and very large groups, with tens of

thousands of members, is essential for practical use

of some of the security mechanisms speci�ed by the

architecture, and schemes have been developed that

permit DNS to support them.

ACLs may list speci�c principals that are de-

nied access, even if those principals are contained in

groups that are permitted access. It is also possible

to deny access to groups that are subgroups of other

groups on the ACL. Certain other restricted forms

of group denial are possible, but it is impractical,

in a distributed environment where group nonmem-

bership cannot be certi�ed, to implement denial to

arbitrary groups.

In addition to listing the principals that may access

an object, the ACL may list the systems to which

access may be delegated (see the discussion of del-

egation in section 10). This capability means that

an object might not be accessible from \untrusted"

workstations even if the user has delegated to that

workstation.

ACLs may be implemented in a number of ways on

di�erent systems, but, because of their user visibil-

ity, it is important that ACLs have similar semantics

on all systems. The VMS system-owner-group-world

mask, or Unix owner/group/other bits, are primitive

forms of ACLs, but such forms must be augmented

(not necessarily replaced with something else) to pro-

vide the necessary semantics outlined above.

ACLs are objects themselves and have ACLs that

specify who can read or modify them. An ACL may

be its own ACL, or there may be other ACLs dedi-

cated to ACL access. Figure 4 illustrates one way a

�le's ACL and an ACL's ACL may be related. In this

�gure the ACL for the ACL's ACL is itself.

8 Authentication

(In the following discussions we use as an example

a principal sending a request to a system or service.

In fact, the terms \system", \server" or \service" are

just di�erent names for principals|the model does

not distinguish between a server and any other type

of principal.)

In order to mediate access to an object that it con-

trols, a server must authenticate that the identity of
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Figure 4: A �le's ACL and an ACL's ACL.

the requester is as claimed. Secure channels provide

this \strong authentication." The password is the

most common type of authentication mechanism used

in systems today but the password does not provide

a secure channel. At the beginning of a conversation,

a set of messages are exchanged between a principal

and a server, where the server establishes that it is

in fact receiving messages from a secure asymmetric

key encryption channel whose only possible sender is

a given principal. Similarly, the principal may wish to

mutually authenticate the server, and this is possible

because the server is also a principal.

In order for a server to know that it is currently

communicating with a given principal, a server must

be sure that the signed messages it is receiving are not

replays of old messages from a previous conversation

(possibly sent by a third party). To deal with timeli-

ness, a challenge/response scheme is used at the be-

ginning of each conversation, where the server sends

a random number to the principal and the princi-

pal returns the number in a signed message. Replay

of a response to an old (di�erent) challenge is not

accepted. Within this signed message is other infor-

mation that permits the two parties to continue to

communicate in a manner that is safe from replays of

past conversations.

Once two principals have authenticated each other

using asymmetric key cryptography, one of them typ-

ically will generate a random secret key and send it

to the other. This secret key will be used to com-

municate (using symmetric key cryptography) in a

manner that provides continued authentication and

con�dentiality for future messages during the conver-

sation. Symmetric key cryptography is usually used

for data exchange because asymmetric key cryptog-

raphy is too slow.

Authentication can also be initiated with symmet-

ric key cryptography where a principal authenticates

itself to a trusted online \key distribution center" and

the key distribution center provides the information

necessary for that principal to then authenticate it-

self to a server. The indirect authentication through

a trusted third party is required because otherwise

the server would have to be told the secret key of

the principal, leaving the principal exposed to mas-

querading by the server.

Nodes and other systems that need to authenticate

themselves have secret or private keys stored in non-

volatile memory within them, and they implement

the RSA and DES algorithms using hardware or soft-

ware. It is expected that software implementations

of RSA or DES (without specialized hardware) will

perform adequately for authentication at the begin-

nings of conversations, but specialized hardware will

be needed to calculate DES at a speed adequate for

data exchange. Before such specialized hardware be-

comes widely available, the authentication functions

can be implemented in software without protecting

the data exchange. This \authenticate at session ini-

tiation only" function provides some measure of secu-

rity in certain applications even though the architec-

ture does not recognize the subsequent unprotected

data exchange as a security capability.1

Since users cannot remember RSA keys hundreds

of bits long, and cannot calculate algorithms in their

heads, user authentication requires a computer for

the calculations and a portable means of storing the

user's private key. Technology is just emerging that

will provide both in the form of a \smart card". Each

user possesses a smart card containing that user's

private key, the user's secret personal identi�cation

number (PIN), and a microprocessor that can com-

pute the RSA algorithm.2 The user authenticates

himself to the workstation by inserting the smart card

into a reader, and entering the PIN into the reader

(if the reader is trusted) or into the card (if the card

has a keypad). The smart card refuses to operate if

the correct PIN is not entered. The smart card then

responds to a challenge from the workstation so that

the workstation can authenticate the identity of the

smart card. The workstation assumes that the user is

in control of the smart card and thereby assumes it is

communicating with the user through the keyboard

1In some international applications data exchange can be
authenticated but by law must not be encrypted. Authenti-
cated of data exchange requires the same high performance
cryptographic hardware as does con�dential data exchange.

2There are smart cards that can do simple calculations and
can store RSA private keys, but if the card cannot do the com-
plete RSA calculation then the private key must be disclosed
to some external device for the calculation. A smart card is
much more secure if there is no function enabling the key to
be read out.
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and screen.

9 Certi�cation

When an access request arrives at a server on a secure

channel, that channel is usually unambiguously asso-

ciated with the public key of the principal making

the request.3 However, access to objects is speci�ed

in terms of DNS names on access control lists, not

in terms of public keys, so just verifying the public

key of the sender on a secure channel is insu�cient

for access control. To enforce the access control list

the server must have some way to determine the DNS

name that corresponds to that public key. To assist in

this determination, the requesting principal provides

its DNS name prior to the request, so the server's

problem is to verify that the DNS name in fact be-

longs to that principal with the veri�ed public key.

It is possible, but not practical, for each server to

keep a table of DNS name-to-public key correspon-

dence for all principals listed on its ACLs. A more

general solution involves the use of certifying authori-

ties (CAs) that are trusted by systems to provide this

veri�cation. A certifying authority is a principal that

possesses its own private key, and its corresponding

public key is made well known to the principals who

choose to trust that CA. A CA willing to certify

that a given public key belongs to a given DNS name

signs a certi�cate stating that association. CAs per-

form other certi�cations as well (e.g., certifying that a

given smart card's public key belongs to a user with a

given DNS name, certifying that a given MAC iden-

ti�es a given software image, and certifying that a

given image may be loaded on a given computer),

and CAs or other principals may also certify other

things (such as group membership lists). In this sec-

tion we are concerned only with the certi�cation of a

public key by a CA for use in authentication.

CAs do their certi�cation as an o�ine process well

in advance of the use of the certi�cates, usually when

a principal's private and public key are �rst created.

The mechanics of generating keys and becoming cer-

ti�ed are details outside the scope of the architecture,

but the process amounts to convincing a CA that the

identity of a principal (e.g., its DNS name) corre-

sponds to a given public key, in a manner similar

to convincing a notary public of the correspondence

between your legal name and your signature. It is

easy for a principal to prove, through a response to

a challenge from a CA, that it possesses the private

counterpart to an alleged public key, so the act of

3This explanation is greatly simpli�ed; the association be-

tween a principal's public key and a given channel may be very
indirect, involvingmany other secure channels and delegations.

certi�cation is one of verifying that the principal is

in fact the one named.

Certi�cation does not require that the CA either

generate or know the private key of the principal be-

ing certi�ed, so a principal does not expose itself to

any threats if certi�ed by an untrustworthy CA. A

compromised CA only compromises those who trust

its certi�cates.4

Any system that knows a CA's public key, and

trusts the CA to vouch for the public key of the identi-

�ed principal, can verify the signature on a certi�cate

and can determine that the public key corresponds to

the given DNS name. Certi�cates for authentication

are usually stored in a DNS server, but a copy of the

information (the name and public key, or perhaps

the whole certi�cate), may be locally cached. While

CAs may be online for convenience (e.g., to distribute

newly signed certi�cates), CAs need not and in fact

cannot work like online servers. Certi�cation must

involve an o�ine path to corroborate the identity of

the principal.

By using signed certi�cates to determine public

keys there need be no online \authentication server,"

and no centralized or replicated database of public

keys is required (except to support revocation|see

section 11). The certi�cates are distributed to the

places where they are needed, and DNS provides a

convenient mechanism for storing certi�cates locally.

There is no one CA that all principals are willing

to trust for all authentications. Each directory in

DNS has an associated CA (see �gure 5), and several

directories may share the same CA. Principals in a

directory usually trust the directory's CA to certify

other principals in that directory. The following lists

the principals that the CAs in �gure 5 are trusted to

certify:

CA-TOP certi�es P1, P2, P3, CA-BOT, CA-MID-2

CA-BOT certi�es P4, P5, P6, P7, P8, CA-TOP

CA-MID-2 certi�es P9, P10, CA-TOP

CAs are also trusted by those principals to certify

the CAs of directories immediately above and below

them (but of course it is unnecessary for a CA to

certify itself if that CA is also associated with an

adjacent directory.)

Typically, principals trust CAs close to them in the

hierarchy. A principal is less likely to trust CAs far-

ther from it in the hierarchy, whether those CAs are

4When a server depending on a compromised CA manages
the principal's resources or has been given the right to act on
behalf of the certi�ed principal (as when a �le server manages

a user's �les or acts on behalf of a user) then the certi�ed
principal may be indirectly compromised.
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Figure 5: Certi�cation authorities in directories of

a DNS hierarchy.

above, below, or in entirely di�erent branches of the

tree. If a server at one point in the hierarchy wants

to authenticate a principal elsewhere, and there is no

one CA that can certify both, then the server must

establish a chain of trust through multiple CAs. This

chain involves all the CAs in the path from the server,

up through the hierarchy to the �rst directory that is

common to both the server and the principal (\least

common ancestor"), and then down to the principal.

For example, in �gure 5, P7 can authenticate P5 by

trusting only CA-BOT. If P7 wants to authenticate

P10, then all three CAs in the �gure must be trusted

because the least common ancestor is CA-TOP.

The authentication process assumes that the prin-

cipal is identi�ed to the server by a full DNS name,

and that the server can determine the \least common

ancestor" and correct CA path by a simple compari-

son of its own name with that of the principal. (For

example, the least common ancestor CA common to

.TOP.MID-1.LOW.BOT.P7 and .TOP.MID-1.LOW.P5

is CA-BOT in .TOP.MID-1.LOW.) By use of a sym-

bolic link on one of the intermediate directories it

is possible to establish a shorter path by making it

appear that the server and principal lie in a com-

mon subtree below their least common ancestor. A

symbolic link alone is just a pointer for convenience

of lookup, but when augmented with a \certi�cation

cross link", the certi�cation path re
ects the sym-

bolic link path. A certi�cation cross link permits a

CA at one point in the hierarchy to directly certify

any other CA or principal, thereby eliminating one

or more higher level CAs from the default chain of

trust. A cross link is a certi�cate signed by a CA

that provides the public key of the CA for the tar-

get directory (or principal), and states that the name

translation speci�ed in the corresponding symbolic

link is correct.

In �gure 6, the cross link at the symbolic link

MID in directory LOW permits P7 to avoid having

to trust CA-TOP to certify P10. Instead, P7 authen-

ticates P10 by trusting CA-BOT (to certify CA-MID-

2), and CA-MID-2 (to certify P10). The least an-

cestor CA common to .TOP.MID-1.LOW.BOT.P7 and

.TOP.MID-1.LOW.MID.P10 is CA-BOT in .TOP.MID-

1.LOW.

TOP�� ��CA-TOP

�
��P1 �
��P2
MID-1�� ��CA-TOP

LOW�� ��CA-BOT

�
��P4
BOT�� ��CA-BOT

�
��P6 �
��P7 �
��P8

�
��P5 MID=
TOP.MID-2

Certi�cation
cross link

-

�
��P3

MID-2�� ��CA-MID-2

�
��P9 �
��P10

Figure 6: Symbolic link MID with certi�cation

cross link. CA-BOT certi�es CA-MID-2

The hierarchical nature of the certi�cation archi-

tecture described here is similar to that used in ISO's

directory authentication framework [CCITT88b]. In

ISO's architecture, however, users who have no a pri-

ori knowledge of the certi�cation hierarchy must po-

tentially trust all CAs because there is no explicit

way to indicate the \least common ancestor" or other

limitations to the chain of trust. The architecture

used here is an outgrowth of work by Birrell, et

al. [Birrell86].

10 Delegation

When a user authenticates himself to a workstation,

the user at the same time delegates to the worksta-

tion the right to speak on behalf of (act as a surro-

gate for) the user. This delegation is expressed in

a certi�cate signed by the user's smart card at lo-

gin. Delegation does not require any modi�cation of

ACLs. When the workstation accesses a remote ser-

vice the workstation presents the delegation certi�-

cate to prove that the user authorized the surrogate.

Note that remote access through a workstation does

not require the remote system to reauthenticate the

user. (The smart card does not play a role in any
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subsequent authentications or delegations.) Instead,

the delegation certi�cate tells the remote system that

the smart card trusts the workstation to accurately

re
ect the user's commands. The remote system may

wish to also authenticate the local workstation, how-

ever, using a challenge/response. Where there is a

cascade of systems involved, each system delegates

to the next system the right to act on its behalf (or

the right to issue statements on behalf of the user),

thereby propagating the ability to act as a surrogate

for the original user.

Once the user delegates rights to a system, that

system can act on the user's behalf even after the

user logs out. To limit the damage in the case of a

subsequent malfunction or compromise of a system,

a properly functioning system terminates the delega-

tion when it is no longer needed (e.g., at the end of a

session) by destroying its copy of any secret key gen-

erated for purposes of that delegation and by notify-

ing the parties with which they were communicating

to no longer honor the delegation. (We assume users

trust their systems while they are using them, but not

necessarily after they logout.) As a backup, in case

of system malfunction, delegations also time out, the

timeout being set when the delegation is made. It

is the responsibility of the system enforcing access to

honor the timeout and delegation termination.

A delegation to a system implies the system may

make any statements at all on behalf of the delegator.

While restricted delegation, where the user speci�es

only a subset of statements such as a list of speci�c

objects that may be referenced, seems desirable, the

types of restrictions that might be useful are highly

application-dependent and cannot be speci�ed by a

security architecture. Instead, we use the concept of

user roles for such restrictions. A user authenticates

himself using a DNS name that is the name of one

of several possible roles, and these roles are repre-

sented as one-member groups in DNS, all containing

the actual user name in their membership list. By

delegating the rights of a speci�c role the user dele-

gates rights to access only those objects that list the

role on their ACLs.

11 Revocation

The architecture provides for a high degree of assur-

ance that access is only granted when authorized.

But once granted, revocation of access is not pro-

vided with the same degree of assurance. Although

revocation is required and supported, the revocation

may not take place in a guaranteed amount of time or

before any speci�c event, and there is no absolute as-

surance that it will ever take place (except that there

is usually some timeout or expiration that places an

upper bound on the duration).

There are several things that one can imagine be-

ing revoked, all of which ultimately a�ect whether

a principal has access to an object: access rights on

ACLs, group membership, certi�cates for authentica-

tion, certi�cates for delegation, and authentication.

Immediate revocation is a di�cult problem because

it requires that either (1) systems not cache any infor-

mation used to make access control decisions (public

keys, group membership, ACL rights), or (2) there

be a mechanism that reliably informs all systems us-

ing the access control information when a change has

been made. Implementing (1) has an unacceptable

e�ect on performance, and (2) is impractical since no-

body can keep track of who is using the access control

information.

Instead of immediate revocation, the architecture

allows for \slow" revocation, where an application-

by-application decision is made as to when, after a

request to revoke, the revocation takes place. Most

likely revocation will be determined by events: e.g.,

the next time a �le is opened, the next time a user logs

in, or when a delegation expires. Delayed revocation

should be implemented in a way that causes users

no surprises. Users maintaining ACLs, for example,

might be informed that revocation has no e�ect on

processes that currently have the �le open.

A system is permitted to parse an ACL in advance,

including expanding all groups named on an ACL,

and to save that information for subsequent attempts

by a principal to access the object. Removing a prin-

cipal from a group or from an ACL will a�ect some

subsequent access but is unlikely to a�ect accesses in

progress. However, if (for example) the e�ect of this

advance computation results in a user's access request

being satis�ed next time he logs in, even though he

has since been removed from the group, then this im-

plementation is not permissible unless a way can be

found to convince users that such behavior is reason-

able.

Certi�cates used for authentication expire, but on

occasion a certi�cate needs to be revoked in advance

because a principal's private key has been compro-

mised, or because the person changes a�liation and

can no longer be trusted to access objects on whose

ACLs he is listed. Certi�cates for authentication are

stored in a few well-known places (most likely, in

DNS), and all services that use certi�cates will look

for them in these well-known places. Revoking a cer-

ti�cate means deleting each copy of the certi�cate

from these places. This deletion is somewhat unre-

liable because DNS directories are replicated, but if

DNS is functioning normally the changes will prop-
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agate to the copies in a reasonable amount of time.

The certi�cation structure in ISO's directory authen-

tication framework [CCITT88b] also depends on the

directory for the \security" of certi�cate revocation.

A system may cache a certi�cate (or the informa-

tion in a certi�cate) but should periodically check the

well-known places to determine whether the cache is

still valid. Other techniques, such as checking the

time a directory was last modi�ed, can be used to

make this process more e�cient. A properly func-

tioning system will not accept a certi�cate from any

source other than a DNS server whom it trusts for

revocation. In particular, the authentication dialog

does not include transmittal of authentication certi�-

cates in place of those that should be obtained from

DNS. In the event of compromise of a DNS server, or

inability for a system to contact a server, revocation

will not work.

Authentication cannot be revoked. Once a certi�-

cate has been used to authenticate a principal, that

authentication is valid for as long as the original cer-

ti�cate was valid, or until the system chooses to stop

using the authentication. Since authentication tends

to happen at the beginnings of sessions when secure

channels are created, authentication is not useful be-

yond the end of a typical session, and properly func-

tioning applications that expect sessions to last for

days or weeks should probably reauthenticate at in-

tervals commensurate with the interval at which they

check DNS directories for changes in certi�cates.

Like authentication, delegation times out but can-

not be revoked once granted. However, delegation

timeouts, tied to the lifetime of most sessions, will

be far shorter than the certi�cate timeouts on which

authentication depends. Both authentications and

delegations are erased when no longer needed (at the

ends of sessions).

Because delegation timeouts are relatively short, it

is possible that a delegation will have to be renewed

during a session before it times out. A facility is pro-

vided whereby such a renewal can be initiated by the

�rst system in the delegation chain and propagated

to other systems in the chain, provided that the user's

smart card is still in place to sign a new certi�cate.

12 Mandatory access controls

The goal of the architecture is to provide mandatory

(non-discretionary) access controls in all systems that

implement discretionary access controls, but it is real-

ized that some systems will never be used in a manda-

tory control environment and so implementation of

mandatory controls is optional. Even if not enforcing

mandatory controls, systems should be compatible

with those that do.

DoD-style mandatory security as speci�ed in the

TCSEC is supported through labeling mechanisms

controlled by the individual reference monitors. Ev-

ery object and subject under direct control of a refer-

ence monitor has one or more access class labels, and

mandatory access to local objects by local subjects is

enforced in the usual manner.

A request originating from a remote system con-

tains an access class label speci�ed by the remote ref-

erence monitor, corresponding to the access class of

the remote subject making the request. The local ref-

erence monitor uses this label, along with additional

information about the remote reference monitor, to

determine whether to allow the access. This addi-

tional information consists of certi�cates (obtained

from DNS in a manner similar to the authentication

certi�cates) that specify the policy domain and set of

access classes for which the remote reference moni-

tor is responsible. Access is granted only if the pol-

icy domain is appropriate (this domain may include

information about the level of assurance of the re-

mote system) and if the access class on the request is

within the permitted set. The \cascading problem"

discussed in the TNI [NCSC87] cannot be fully pre-

vented except by system con�guration, because none

of the systems participating in the potential unau-

thorized write-down of information can be trusted to

prevent it.

It is our intent to specify a commercial integrity

architecture, perhaps based on the Clark and Wilson

model [Wilson87], but work in that area remains to

be done.

When both discretionary and mandatory access

controls are applied to an access request, if either set

of controls would disallow the request, then access is

denied. In contrast to discretionary access controls,

changes to mandatory access control attributes of

principals and objects must take e�ect immediately.

For example, security violations could occur if a re-

quest to \downgrade" or \upgrade" an access class

does not immediately abort any accesses in progress

that might no longer be allowed. The di�culty of im-

plementing immediate revocation is mitigated by the

fact that changes to mandatory attributes are rare,

as noted above.

13 Problems not covered

The security architecture does not address all secu-

rity concerns in computer systems. It concentrates

on security problems that are unique to or exacer-

bated by distributed systems, such as authentica-

tion, secure communication, and global access con-
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trol. Other problems in developing useful distributed

systems, whether or not they have to do with security

(such as global naming, synchronization, distributed

databases, and assurance) are presumed to be ad-

dressed by other e�orts, and a practical implementa-

tion of the security architecture may require solutions

to problems in these other areas.

14 Status

The security architecture is intended for implemen-

tation across the entire Digital product line, includ-

ing all operating systems, applications and hardware

components. Any product acting on behalf of mul-

tiple users, or needing to take part in access con-

trol decisions, is a�ected by the architecture. When

in place, the architecture will discourage the imple-

mentation of ad hoc, duplicative, and inconsistent se-

curity mechanisms in Digital software and hardware

products. Of course, the security mechanisms will

also be made available to customers for use by their

own developers.

At this time of writing the details of the architec-

ture (protocols, message formats, algorithms, etc.)

are under development|little implementation has

begun. Most of the groundwork and formal logic has

been worked out, and functional speci�cations have

been written.
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