
The Digital Distributed System Security Architecture
Morrie Gasser, Andy Goldstein, Charlie Kaufman, Butler Lampson

Digital Equipment Corp. 85 Swanson Rd., Boxborough, Mass. 01719
Proc. 12th National Computer Security Conf., NIST/NCSC, Baltimore, 1989, pp 305-319.

Abstract
The Digital Distributed System Security Architec-

ture is a comprehensive specification for security in a
distributed system that employs state-of-the-art con-
cepts to address the needs of both commercial and gov-
ernment environments. The architecture covers user
and system authentication, mandatory and discretion-
ary security, secure initialization and loading, and
delegation in a general-purpose computing environ-
ment of heterogeneous systems where there are no cen-
tral authorities, no global trust, and no central controls.
The architecture prescribes a framework for all applica-
tions and operating systems currently available or to be
developed. Because the distributed system is an open
OSI environment, where functional interoperability
only requires compliance with selected protocols
needed by a given application, the architecture must be
designed to securely support systems that do not im-
plement or use any of the security services, while pro-
viding extensive additional security capabilities for
those systems that choose to implement the architec-
ture.

1. Overview
The state of the art of computer security today is

such that reasonably secure standalone operating sys-
tems can be built, and reasonably secure connections
between the systems can be implemented. The purpose
of the Digital Distributed System Security Architecture
is to permit otherwise secure standalone systems to
interoperate in a distributed environment without re-
ducing the level of security and assurance of those sys-
tems. By “interoperate” we mean the ability to use, in a
distributed fashion, all of the security capabilities in-
herent in standalone systems. Users “login” just once to
the distributed system, users and objects have unique
global names, and mandatory and discretionary access
will be enforced regardless of the relative locations of
the subjects and objects.

This architecture primarily addresses features
for “commercial-grade” security and lower TCSEC
[DOD85] classes up through Bl. It addresses many
security needs outside the scope of the TCSEC, and
does not cover assurance requirements required by

TCSEC classes B2 through Al. However, nothing pre-
cludes a system from implementing this architecture
with a level of assurance beyond Bl.

The architecture makes extensive use of encryp-
tion. Confidentiality and integrity for communication
using symmetric (secret) key cryptography is presumed
to be inexpensive and pervasive. Asymmetric (public)
key cryptography is used for key distribution, authenti-
cation and certification. Users authenticate themselves
with smart cards containing private keys and mecha-
nisms to calculate cryptographic algorithms, and all
systems possess their own private keys to authenticate
themselves to other systems.

Authentication is assisted by the use of certificates,
digitally signed by certifying authorities and stored in a
distributed naming service that provides a hierarchical
name space. A certification hierarchy tied to the nam-
ing hierarchy, along with the use of certain naming
conventions, eliminates the need for global trust or
trust of the naming service. Systems that need to act on
behalf of other systems or users are explicitly given the
right to do so through certificates signed by the dele-
gating parties.

In this paper key terms defined here are in italics.
While most of these terms are well-known, the defini-
tions here may be unconventional, different from past
usage in similar contexts.

2. Security policy and reference
monitors

The traditional concept of a single security policy
and reference monitor [Ames83] for the entire com-
puter system is not practical for a distributed system.
While there are certain distributed environments where
security management responsibility is centralized, in
most cases the individual systems comprising the dis-
tributed system must be considered to be independently
managed and potentially hostile toward each other.
Mutually suspicious systems should be required to co-
operate only to the extent that they need each other’s
services, and no more. Moreover, even if we could
assume that a large distributed system were centrally
managed under a single security administrator, building
a distributed reference monitor to provide all the secu-
rity capabilities of a single system presents unsolved
research challenges.



Rather than a common security policy and refer-
ence monitor, each system implements its own refer-
ence monitor enforcing its own policy. Each reference
monitor is responsible for controlling access to the ob-
jects it maintains. In the most general case the refer-
ence monitor on one system receives a request to ac-
cess one of its objects from a subject controlled by a
reference monitor on another system. Access is permit-
ted only if the reference monitor for the object can ver-
ify that proper subject authentication has taken place,
that the system from which the request is received has
been duly authorized by the subject to make that re-
quest, and that there is compatibility between the secu-
rity policy of the requester’s reference monitor and that
of the object’s so that access rights can be evaluated.
Implicit in this compatibility is some level of mutual
trust of the reference monitors.

In today’s systems, reference monitors are usually
operating systems and large subsystems or servers that
manage their own objects directly. In the future distrib-
uted system any application may become the reference
monitor for its own set of subject and objects. The sub-
jects and objects controlled by such a reference moni-
tor may be implemented out of other subjects and ob-
jects controlled by another underlying reference moni-
tor. Also, in certain limited cases, several systems may
“team up” to comprise a larger system implementing a
single distributed reference monitor, all implementing
exactly the same policy and fully trusting each other.
At this time the security architecture does not explicitly
address the mechanisms needed to construct composite
objects or multiple reference monitors in a computer
system, and does not impose any structure on the rela-
tionship between reference monitors. The architecture
simply allows all reference monitors who are able to
identify their own components to securely manage their
globally accessible resources in a uniform manner.

For the most part, the architecture defines interop-
erable security mechanisms and does not address de-
grees of assurance of reference monitors as addressed
in the TCSEC. Regardless of their assurance, it is ex-
pected that all systems conforming to the architecture
will implement interoperable mechanisms. Assurance,
where important, will impose design constraints and
methodologies on individual systems but should not
influence the security-related external behavior of
those systems. For example, a security kernel architec-
ture might permit a reference monitor to be contained
within a subset of a whole operating system, allowing
that system as a component of the distributed system to
be granted an Al rating. Such a subset must implement
all of the relevant security mechanisms that might be
implemented by other (e.g., C2) systems on the distrib-
uted system where the entire operating system acts as a
reference monitor. The architecture also permits differ-
ent reference monitors to have a mutual understanding

of their respective degrees of assurance and accredita-
tion ranges so that they can determine whether their
security policies are compatible.

3. Computing model
The world is made up of interconnected systems

and users. A system is comprised of hardware (e.g., a
computer) and software (e.g., an operating system), and
a system can support one or more software systems
running on it. Systems implement other systems, so, for
example, a computer implements an operating system
which implements a database management system
which implements a user query process. In this manner,
a system whose reference monitor controls one set of
objects might implement another system with a refer-
ence monitor for another set of objects. For purposes of
the security architecture, we rarely distinguish between
the different types of software systems such as hosts,
operating systems, database management systems,
servers, and applications, and we rarely need to get
involved in the possible hierarchical relationship be-
tween systems built out of underlying systems.

A user interacts physically through a keyboard and
screen that are electrically (or securely) connected to a
system: usually a workstation, timesharing system, or
terminal server. The user invokes an operating system
and applications processes on that system which he
trusts to perform work on his behalf. The work may
involve only data local to the workstation, or may in-
volve data on and interaction with remote services on
other systems.

All interactions, direct or indirect, between a user
and a remote system pass through the user’s local sys-
tem. Therefore the local system must be trusted to ac-
curately convey the user’s commands to the remote
system, and the remote system must be trusted to im-
plement the commands. Because the local system has
access to any remote information that the user can ac-
cess on that remote system, the user has no choice but
to trust his local system to be faithful to his wishes.

The remote system, in order to satisfy a user’s
command, may need to forward the command, or make
an additional request, to a second remote system. In
such a case the first remote system must also be trusted
to accurately reflect the user’s wishes. In general, the
user may interact through a chain of systems, where the
user must trust each system in the chain, and where
communications between the systems in the chain is
assumed to be secure so that the commands and re-
sponses are safe from alteration, forgery or disclosure.



4. Message authentication and secure
channels

The architecture depends extensively on the use of
a message hash function that yields a message authen-
tication code (MAC), a short “digest” of a message that
is much more efficient to communicate and store than
the original message. A good hash function has the
property that, given the MAC of one message, it is
computationally infeasible to create another message
having the same MAC. While cryptographic MACs are
frequently used where two parties already have estab-
lished a cryptographic association, message hashes of
greatest interest to the architecture are those whose
security does not depend on knowledge of shared keys,
so that anyone can check the MAC of a message but
nobody can forge another message with the same
MAC. This permits MACs of widely used messages to
be freely distributed without prior negotiation of keys.
An example of such a hash function is provided in An-
nex D of the CCITT recommendation X.509
[CCITT88b].

In this architecture, communicating securely
means satisfying one or both of the properties: (1)
knowing who originally created a message you are
reading, which we call authentication, and (2) knowing
who can read a message you create, which we call con-
fidentiality. The ISO (International Standards Organi-
zation) term “data origin authentication” [ISO88b] is
equivalent to property (1). Our concept of authentica-
tion also implies “data integrity”: assurance that the
message you are reading is exactly the same as the one
that was created (if the message is altered then it’s not
a message from the originator).

The term “peer entity authentication”, used by ISO
to describe the property that you know with whom you
are communicating, is subsumed in our architecture by
both properties (1) and (2). In the security architecture
it is meaningless to have “peer entity authentication”
by itself: without either confidentiality or data origin
authentication (with integrity) you cannot tell whether
your message is protected or whether you are actually
receiving what was sent and so communication is not
secure in any practical sense.

ISO’s definition of “confidentiality” is also not
strictly the same as ours, as we assume that the recipi-
ent is known and must therefore have been authenti-
cated at some time in the past.

The concept of a secure channel, introduced by
Birrell, et al. [Birrell86], is an abstract way of viewing
how we accomplish properties (1) and (2). A channel is
a path by which two or more entities communicate. A
secure channel may be a protected physical path (e.g., a
physical wire, a disk drive and medium) or an en-
crypted logical path. A channel need not be real time: a
message written on a channel may not be read until

sometime later. A secure channel provides either au-
thentication or confidentiality, or both, while an inse-
cure channel provides neither. Communication via in-
secure channels is permitted but is not addressed by the
architecture.

Secure channels have identifiers known to the
senders and the receivers. A secure physical channel is
identified by a hardware address such as an I/O port
number on a computer or a disk drive and block num-
ber. An encryption channel is identified by an encryp-
tion key. Any message encrypted under a given key is
said to be written on the channel identified by that key,
regardless of whether that message is “sent” anywhere.
When the message is decrypted it is said to be read
from the channel. The ciphertext of an encrypted mes-
sage may be written on another channel before being
decrypted: typically the cipher-text is written on an
insecure channel for transmission, read from the inse-
cure channel, and finally read from the secure channel
by decryption.

For a secure channel that provides authentication,
the senders are known to the receivers and are thus
authenticated. Specifically, a receiver of a message on
a secure channel can determine that the message was
written by someone in a known set of senders. If there
is more than one possible sender then, in order to de-
termine the actual sender, the receiver must trust the
senders to cooperate by properly identifying them-
selves within the text of the message or by not sending
unless requested.

For a secure channel that provides confidentiality,
the receivers are known to the senders and are author-
ized by the senders to receive the information. In most
cases there is usually only one possible receiver. If
there is more than one, and the sender wants to limit
the message to a specific receiver, then the sender must
trust the other receivers not to read messages unin-
tended for them.

A symmetric key channel (identified by a secret
encryption key) provides confidentiality and, can pro-
vide authentication with the use of a MAC for integ-
rity. For a symmetric key channel all authorized send-
ers and receivers must share the same key, and there-
fore all senders and receivers are in the set authorized
to read or write information on the channel.

An asymmetric key channel (identified by either
its private or public key) provides authentication if a
message is encrypted with the private key, or confiden-
tiality if a message is encrypted with the public key. A
single encryption operation cannot provide both prop-
erties (even though a single public/private key pair can
provide both). Typically there is a unique pair of keys
for each principal. The principal keeps its private key
confidential and the public key is made generally avail-
able (online or through some directory service). This
and the following description of asymmetric key chan-



nels primarily applies to the RSA public key algorithm
[Rivest78].

In an asymmetric key channel used for authentica-
tion, the sender creates a “digital signature” of the mes-
sage by encrypting the MAC of the message using the
sender’s private key, and sends the signature along
with the original (plaintext) message. Any recipient
who knows the sender’s public key can verify the sig-
nature by recalculating the MAC and comparing it to
the decrypted signature, to determine whether the
original message was signed by the sender. The sender
is authenticated to the receiver because only the sender
knows the private key used to sign the MAC.

It is impractical for all entities in the distributed
system to know the correct public keys of all other en-
tities with which they want to communicate. Entities
are typically identified using network addresses or
names expressed as character strings. A special kind of
signed message, termed a certificate, is used to un-
forgeably associate the name of an entity with its pub-
lic key. Certificates also have a number of related func-
tions as described below.

In an asymmetric key channel used for confidenti-
ality, a sender encrypts a message with a receiver’s
public key which only the single receiver can decrypt
with the private key. The sender’s message is thus con-
fidential. Since anyone can encrypt a message with
someone’s public key this channel does not provide
authentication of the sender. To provide both authenti-
cation and confidentiality, a message must be first
signed with the sender’s private key and the result en-
crypted with the receiver’s public key. In practice, both
steps are rarely applied to the same message, and in
fact the architecture rarely needs to make use of asym-
metric key cryptography for confidentiality.

The most popular algorithm for symmetric key en-
cryption is the Data Encryption Standard (DES). How-
ever, the DES algorithm is not specified by the archi-
tecture and, for export reasons, ability to use other al-
gorithms is a requirement. The preferred algorithm for
asymmetric key cryptography, and the only known
algorithm with the properties required by the architec-
ture, is RSA. As with DES, the architecture does not
specify and will not depend on the details of the RSA
algorithm; another algorithm with similar properties, if
invented in the future, is permitted.

Access control does not apply to secure encryption
channels: a secure encryption channel as defined in the
architecture is created when needed and is not a limited
resource or object to be protected. Access to the chan-
nel is determined by those who possess the encryption
keys. A physical channel (whether or not it is used for
security) is a limited resource to which access may
need to be controlled. In such a case the channel would
be treated as an object, with an ACL (see section 7)
and perhaps mandatory access controls.

When two systems interact through a secure en-
cryption channel (e.g., two nodes on different LANs
using end-to-end encryption across a wide area net-
work), there may be many intermediate systems (gate-
ways, bridges or routers, etc.) in the path between the
end systems. These intermediate systems are needed to
support communications for the applications in the end
systems but need not be trusted to keep the channel
secure. Intermediaries in a secure physical channel, on
the other hand) must be trusted.

For some applications involving several systems
there are a number of secure channels between pairs of
systems participating in the application. For example,
consider a user on a workstation who submits a query
that gets forwarded to a remote DBMS which accesses
a record in a file on a file server. In this example the
DBMS system is an endpoint of one secure channel
(from the workstation) and an originating point for a
second secure channel (to the file server). Normally all
three systems must be trusted by the user because the
DBMS processes both the query and the results being
returned and there is no secure channel directly from
the user’s workstation to the file server. On the other
hand, if the file server encrypts (and integrity-protects)
a record that it hands to the DBMS, and the DBMS
simply forwards the record to the user’s workstation
for decryption, then there is a secure channel between
the file server and workstation and the user does not
need to trust the DBMS to protect that record from
disclosure or undetected modification.

In the context of communications it is simplest t
think of secure channels as secure transport layer con-
nections providing confidentiality and integrity of the
data, even though transport is not the only place where
there may be secure communications. In the context of
authentication a secure channel is usually something
defined by a given encryption key that is used to pass
signed messages.

At this time, the architecture is not tied to any spe-
cific protocol suite. The detailed specifications of pro-
tocols, to be prepared eventually, will describe how to
set up secure channels using specific network proto-
cols.

5. Computers and loading
A computer is a system made up of a particular

physical set of hardware components running some
boot code. All connections between the computer and
the rest of the world must be through secure channels.

An engine is a hardware or software device created
by a system that can be loaded with a program to pro-
duce another system. The computer running its boot
code provides an engine into which an operating sys-
tem can be loaded, thereby creating what we com-
monly refer to as a host or node. Another example of



an engine is a process provided by an operating system.
When loaded with an application program, the running
process becomes a system. These relationships are il-
lustrated in figure 1.

A specification is a description of a system’s be-
havior (e.g., the specific behavior of a VAX 6250
computer or that of VMS 5.0, documented in some
manual). While a specification is rarely written down
precisely, users of (or systems interacting with) a sys-
tem that is “certified” to meet a given specification can
be assured that the system will behave as they expect.
The architecture deals with the problems of certifying a
system and determining whether that certification was
done by someone you trust. Certifying a system does
not have anything to do with software correctness—
certifying that a system meets the “VMS 5.0 specifica-
tion” simply means knowing that a specific program
(the “VMS 5.0 boot image”) was loaded into a specific
type of system (a “VAX computer”) using specific
sysgen parameters. It is assumed that the particular
boot image does what is intended—proving that the
program in fact meets some written specification is
outside the scope of the architecture.

In general, software is certified by the system
loading the engine it has created, by verifying that the
MAC of the software image is equal to the expected
value for that software’s specification. For example, if
the MAC of an image you have just loaded is equal to
the MAC you expect for “VMS 5.0 boot image” then
you can be confident that you have just loaded a pro-
gram that will behave according to the “VMS 5.0
specification.” The MACs of various images that may
be loaded into a given system are contained in certifi-
cates.

Each system, including the computer hardware it-
self, has a secret (the private portion of a private/public
cryptographic key pair), generated randomly when the
system is installed or created, which it uses to authenti-
cate itself and to certify systems it creates. A system is
responsible for protecting its secret from disclosure to
the created systems. Through chains of reasoning be-
ginning with the computer and ending with an applica-
tion system (for example) it is possible to certify any
desired aspect of a system or its behavior. In contrast to
software systems’ secrets which are created each time

the system is rebooted, computer secrets are semi-
permanent, stored in programmable read-only memory.

When a computer is asked to boot some software,
the boot hardware in the computer (usually imple-
mented as software in read-only memory) calculates a
MAC of the operating system that it has loaded, and,
before permitting execution, verifies (by checking cer-
tificates received with the boot image or provided to it
by system management) that an operating system with
the designated MAC is permitted to run on that com-
puter. If verified, the boot hardware generates a pri-
vate/public key for use by the loaded operating system,
signs, using its boot secret, a certificate associating the
MAC with the new public key, deletes the boot secret
from any place that operating system can get to, and
then begins execution of the loaded operating system.
The operating system, in turn, uses its new private key
as a secret to sign for other systems (applications) that
it loads, and so on. When asked to authenticate itself to
a remote system, the operating system presents as cre-
dentials its certificate signed by the computer. In this
manner, with minimal new mechanisms in the hard-
ware, the computer has protected itself from being
loaded with malicious software, and other systems who
trust the computer’s boot hardware can verify the iden-
tity of the loaded operating system. Of course, if the
operating system is compromised after it starts running
nobody may find out. Techniques to insure that the
operating system is able to protect itself and remain in
secure state after it starts running are addressed by op-
erating system security mechanisms and are outside of
the Distributed System Security Architecture.

6. Naming
A principal is an entity that can be granted access

to objects or can make statements affecting access con-
trol decisions. Principals are subjects in the TCSEC
sense, but not all subjects are principals. For example,
a principal may spawn multiple process within a sys-
tem, each one identified as its own subject to the oper-
ating system, but the architecture treats each of these
subjects as if they were the original principal and
makes no attempt to isolate them from each other.
When a principal accesses an object the reference

Figure 1: Computers, systems, programs and engines.



monitor for the principal in control of the object must
have some way of identifying the requesting principal,
and this identification is in the form of a unique global
identifier. These global identifiers are Digital Naming
Service (DNS) names.

Users and systems (nodes, servers, etc.) are named
principals who have DNS names. There are also prin-
cipals such as smart cards, processes, and sessions that
do not have DNS names and that always act on behalf
of other (named) principals. The use of DNS is perva-
sive in the architecture, but the primary reason for DNS
names is so that users can identify principals and can
enter their names on access control lists (see section 7).
Without DNS names, users would have to identify
principals with unwieldy cryptographic keys.

DNS has a hierarchical tree structure, with a single
root at the top and directories at the branches. A princi-
pal’s name lies within some directory and the principal
always knows (or can determine) its place in the hier-
archy from the root; the series of directory names from
the root down to the principal is the principal’s DNS
name. In figure 2, for example, the full DNS name of
principal P8 is TOP.MID-1.LOW.BOT.P8. While DNS
names are human-readable, it is not expected that peo-
ple will have to type a full DNS name very often. The
DNS structure and the services provided by DNS are
very similar to the directory proposed by CCITT and
ISO [CCITT88a].

Figure 2: Example of DNS hierarchy.

Figure 3: Symbolic link in DNS.

Principals, and even large sections of the hierarchy
(subtrees), may be moved from one place in the tree to
another as organizational and other associations
change. This means that a principal’s name (usually,
just the directories in a principal’s name) can change,
perhaps without the principal’s awareness. When a
subtree is moved a symbolic link may be placed at the
old location’s parent directory that points to the new
location of the subtree, thereby permitting principals to
be found using their old names (see figure 3). Symbolic
links serve a number of other purposes not related to
security.

Because of symbolic links, a principal may be
identified by several DNS names, only one of which is
the true name. In figure 3, the principal originally
known by the name TOP.MID-1.LOW.BOT.P8 in figure
2 is now located at TOP.MID-2.NEWBOT.P8, and may
be referenced by either name due to the presence of the
symbolic link at the old location of the BOT directory.
To provide a fast way to determine whether two names
refer to the same principal (something that the access
control mechanism must be able to do) a principal also
has a unique-identifier (UID) which doesn’t change
even if the DNS name of a principal changes. The UID
is stored in DNS in the directory entry for the principal,
and plays an additional role in the reassignment of
names and definition of the directory hierarchy. With
minor exceptions, the UID is used by the security ar-
chitecture for performance rather than for security.
Thus, the algorithm for enforcing uniqueness of UIDs
is outside the architecture. In a few cases where secu-
rity depends on uniqueness of UIDs, there are simple
ways to enforce it.

Except for the names, UIDs and symbolic links,
other aspects of the DNS architecture are not relevant
to the security architecture and security (except certain
types of revocation described in section 11) does not
depend on correct functioning of the DNS servers. Of
course, if DNS does not function correctly availability
might suffer.



7. Access control
All information to which access is controlled is

contained in objects. All objects have access control
lists (ACLs): lists of principals (identified by DNS
name) who may have access to the object, along with
their access rights. There are a small number of archi-
tecturally defined access rights, such as “read,”
“write,” etc., and some number of system-defined
rights. It is the responsibility of the system (the refer-
ence monitor) controlling an object to enforce the
ACL. An operating system, for example, enforces the
ACLs for the files in its file system. The principal that
controls an object is not listed on the ACL.

ACLs may contain names of groups of principals.
Groups are objects with DNS names and may be cre-
ated and modified by ordinary users, not just by system
managers. All groups must exist as an explicit list of
principals—there is no architectural support for “im-
plicit” groups identified through some kind of naming
convention (for example, “all principals contained in a
given directory”) but implementing such a capability is
not precluded. However, large groups may be con-
structed out of smaller groups: groups may be nested
(may name other groups) to an arbitrary depth. The
ability to efficiently support both very small and very
large groups, with tens of thousands of members, is
essential for practical use of some of the security
mechanisms specified by the architecture, and schemes
have been developed that permit DNS to support them.

ACLs may list specific principals that are denied
access, even if those principals are contained in groups
that are permitted access. It is also possible to deny
access to groups that are subgroups of other groups on
the ACL. Certain other restricted forms of group denial
are possible, but it is impractical, in a distributed envi-
ronment where group nonmembership cannot be certi-
fied, to implement denial to arbitrary groups.

In addition to listing the principals that may access
an object, the ACL may list the systems to which ac-
cess may be delegated (see the discussion of delegation
in section 10). This capability means that an object
might not be accessible from “untrusted” workstations
even if the user has delegated to that workstation.

ACLs may be implemented in a number of ways
on different systems, but, because of their user visibil-
ity, it is important that ACLs have similar semantics on
all systems. The VMS system-owner-group-world
mask, or Unix owner/group/other bits, are primitive
forms of ACLs, but such forms must be augmented
(not necessarily replaced with something else) to pro-
vide the necessary semantics outlined above.

ACLs are objects themselves and have ACLs that
specify who can read or modify them. An ACL may be
its own ACL, or there may be other ACLs dedicated to
ACL access. Figure 4 illustrates one way a file’s ACL

and an ACL’s ACL may be related. In this figure the
ACL for the ACL’s ACL is itself.

Figure 4: A file’s ACL and an ACL’s ACL.

8. Authentication
(In the following discussions we use as an example

a principal sending a request to a system or service. In
fact, the terms “system”, “server” or “service” are just
different names for principals—the model does not
distinguish between a server and any other type of
principal.)

In order to mediate access to an object that it con-
trols, a server must authenticate that the identity of the
requester is as claimed. Secure channels provide this
“strong authentication.” The password is the most
common type of authentication mechanism used in
systems today but the password does not provide a
secure channel. At the beginning of a conversation, a
set of messages are exchanged between a principal and
a server, where the server establishes that it is in fact
receiving messages from a secure asymmetric key en-
cryption channel whose only possible sender is a given
principal. Similarly, the principal may wish to mutually
authenticate the server, and this is possible because the
server is also a principal.

In order for a server to know that it is currently
communicating with a given principal, a server must be
sure that the signed messages it is receiving are not
replays of old messages from a previous conversation
(possibly sent by a third party). To deal with timeli-
ness, a challenge/response scheme is used at the begin-
ning of each conversation, where the server sends a
random number to the principal and the principal re-
turns the number in a signed message. Replay of a re-
sponse to an old (different) challenge is not accepted.
Within this signed message is other information that
permits the two parties to continue to communicate in a
manner that is safe from replays of past conversations.

Once two principals have authenticated each other
using asymmetric key cryptography, one of them typi-
cally will generate a random secret key and send it to



the other. This secret key will be used to communicate
(using symmetric key cryptography) in a manner that
provides continued authentication and confidentiality
for future messages during the conversation. Symmet-
ric key cryptography is usually used for data exchange
because asymmetric key cryptography is too slow.

Authentication can also be initiated with symmet-
ric key cryptography where a principal authenticates
itself to a trusted online “key distribution center” and
the key distribution center provides the information
necessary for that principal to then authenticate itself to
a server. The indirect authentication through a trusted
third party is required because otherwise the server
would have to be told the secret key of the principal,
leaving the principal exposed to masquerading by the
server.

Nodes and other systems that need to authenticate
themselves have secret or private keys stored in non-
volatile memory within them, and they implement the
RSA and DES algorithms using hardware or software.
It is expected that software implementations of RSA or
DES (without specialized hardware) will perform ade-
quately for authentication at the beginnings of conver-
sations, but specialized hardware will be needed to
calculate DES at a speed adequate for data exchange.
Before such specialized hardware becomes widely
available, the authentication functions can be imple-
mented in software without protecting the data ex-
change. This “authenticate at session initiation only”
function provides some measure of security in certain
applications even though the architecture does not rec-
ognize the subsequent unprotected data exchange as a
security capability.1

Since users cannot remember RSA keys hundreds
of bits long, and cannot calculate algorithms in their
heads, user authentication requires a computer for the
calculations and a portable means of storing the user’s
private key. Technology is just emerging that will pro-
vide both in the form of a “smart card”. Each user pos-
sesses a smart card containing that user’s private key,
the user’s secret personal identification number (PIN),
and a microprocessor that can compute the RSA algo-
rithm.2 The user authenticates himself to the work-
station by inserting the smart card into a reader, and
entering the PIN into the reader (if the reader is trusted)
or into the card (if the card has a keypad). The smart

1 In some international applications data exchange can
be authenticated but by law must not be encrypted. Authenti-
cated of data exchange requires the same high performance
cryptographic hardware as does confidential data exchange.

2 There are smart cards that can do simple calculations
and can store RSA private keys, but if the card cannot do the
complete RSA calculation then the private key must be dis-
closed to some external device for the calculation. A smart
card is much more secure if there is no function enabling the
key to be read out.

card refuses to operate if the correct PIN is not entered.
The smart card then responds to a challenge from the
workstation so that the workstation can authenticate the
identity of the smart card. The workstation assumes
that the user is in control of the smart card and thereby
assumes it is communicating with the user through the
keyboard and screen.

9. Certification
When an access request arrives at a server on a se-

cure channel, that channel is usually unambiguously
associated with the public key of the principal making
the request.3 However, access to objects is specified in
terms of DNS names on access control lists, not in
terms of public keys, so just verifying the public key of
the sender on a secure channel is insufficient for access
control. To enforce the access control list the server
must have some way to determine the DNS name that
corresponds to that public key. To assist in this deter-
mination, the requesting principal provides its DNS
name prior to the request, so the server’s problem is to
verify that the DNS name in fact belongs to that princi-
pal with the verified public key.

It is possible, but not practical, for each server to
keep a table of DNS name-to-public key correspon-
dence for all principals listed on its ACLs. A more
general solution involves the use of certifying authori-
ties (CAs) that are trusted by systems to provide this
verification. A certifying authority is a principal that
possesses its own private key, and its corresponding
public key is made well known to the principals who
choose to trust that CA. A CA willing to certify that a
given public key belongs to a given DNS name signs a
certificate stating that association. CAs perform other
certifications as well (e.g., certifying that a given smart
card’s public key belongs to a user with a given DNS
name, certifying that a given MAC identifies a given
software image, and certifying that a given image may
be loaded on a given computer), and CAs or other prin-
cipals may also certify other things (such as group
membership lists). In this section we are concerned
only with the certification of a public key by a CA for
use in authentication.

CAs do their certification as an offline process
well in advance of the use of the certificates, usually
when a principal’s private and public key are first cre-
ated. The mechanics of generating keys and becoming
certified are details outside the scope of the architec-
ture, but the process amounts to convincing a CA that
the identity of a principal (e.g., its DNS name) corre-
sponds to a given public key, in a manner similar to

3 This explanation is greatly simplified; the association
between a principal’s public key and a given channel may be
very indirect, involving many other secure channels and dele-
gations.



convincing a notary public of the correspondence be-
tween your legal name and your signature. It is easy for
a principal to prove, through a response to a challenge
from a CA, that it possesses the private counterpart to
an alleged public key, so the act of certification is one
of verifying that the principal is in fact the one named.

Certification does not require that the CA either
generate or know the private key of the principal being
certified, so a principal does not expose itself to any
threats if certified by an untrustworthy CA. A com-
promised CA only compromises those who trust its
certificates.4

Any system that knows a CA’s public key, and
trusts the CA to vouch for the public key of the identi-
fied principal, can verify the signature on a certificate
and can determine that the public key corresponds to
the given DNS name. Certificates for authentication are
usually stored in a DNS server, but a copy of the in-
formation (the name and public key, or perhaps the
whole certificate), may be locally cached. While CAs
may be online for convenience (e.g., to distribute
newly signed certificates), CAs need not and in fact
cannot work like online servers. Certification must
involve an offline path to corroborate the identity of the
principal.

By using signed certificates to determine public
keys there need be no online “authentication server,”
and no centralized or replicated database of public keys
is required (except to support revocation—see section
11). The certificates are distributed to the places where
they are needed, and DNS provides a convenient
mechanism for storing certificates locally.

There is no one CA that all principals are willing
to trust for all authentications. Each directory in DNS
has an associated CA (see figure 5), and several direc-
tories may share the same CA. Principals in a directory
usually trust the directory’s CA to certify other princi-
pals in that directory. The following lists the principals
that the CAs in figure 5 are trusted to certify:

4 When a server depending on a compromised CA man-
ages the principal’s resources or has been given the right to
act on behalf of the certified principal (as when a file server
manages a user’s files or acts on behalf of a user) then the
certified principal may be indirectly compromised.

Figure 5: Certification authorities in directories of a DNS
hierarchy.

CA-TOP certifies P1, P2, P3, CA-BOT, CA-

MID-CA-BOT certifies P4, P5, P6, P7, P8, CA-TOP

CA-MID-2 certifies P9, P10, CA-TOP

CAs are also trusted by those principals to certify
the CAs of directories immediately above and below
them (but of course it is unnecessary for a CA to certify
itself if that CA is also associated with an adjacent di-
rectory.)

Typically, principals trust CAs close to them in the
hierarchy. A principal is less likely to trust CAs farther
from it in the hierarchy, whether those CAs are above,
below, or in entirely different branches of the tree. If a
server at one point in the hierarchy wants to authenti-
cate a principal elsewhere, and there is no one CA that
can certify both, then the server must establish a chain
of trust through multiple CAs. This chain involves all
the CAs in the path from the server, up through the
hierarchy to the first directory that is common to both
the server and the principal (“least common ancestor”),
and then down to the principal. For example, in figure
5, P7 can authenticate P5 by trusting only CA-BOT. If
P7 wants to authenticate P10, then all three CAs in the
figure must be trusted because the least common ances-
tor is CA-TOP.

The authentication process assumes that the prin-
cipal is identified to the server by a full DNS name,
and that the server can determine the “least common
ancestor” and correct CA path by a simple comparison
of its own name with that of the principal. (For exam-
ple, the least common ancestor CA common to
TOP.MID-1.LOW.BOT.P7 and TOP.MID-1.LOW.P5 is
CA-BOT in TOP.MID-1.LOW.) By use of a symbolic
link on one of the intermediate directories it is possible
to establish a shorter path by making it appear that the
server and principal lie in a common subtree below
their least common ancestor. A symbolic link alone is
just a pointer for convenience of lookup, but when
augmented with a “certification cross link”, the certifi-



cation path reflects the symbolic link path. A certifica-
tion cross link permits a CA at one point in the hierar-
chy to directly certify any other CA or principal,
thereby eliminating one or more higher level CAs from
the default chain of trust. A cross link is a certificate
signed by a CA that provides the public key of the CA
for the target directory (or principal), and states that the
name translation specified in the corresponding sym-
bolic link is correct.

In figure 6, the cross link at the symbolic link MID
in directory LOW permits P7 to avoid having to trust
CA-TOP to certify P10. Instead, P7 authenticates P10

by trusting CA-BOT (to certify CA-MID-2), and CA-

MID-2 (to certify P10). The least ancestor CA common
to TOP.MID-1.LOW.BOT.P7 and TOP.MID-

1.LOW.MID.P10 is CA-BOT in TOP.MID-1.LOW.

The hierarchical nature of the certification archi-
tecture described here is similar to that used in ISO’s
directory authentication framework [CCITT88b]. In
ISO’s architecture, however, users who have no a pri-
ori knowledge of the certification hierarchy must po-
tentially trust all CAs because there is no explicit way
to indicate the “least common ancestor” or other limita-
tions to the chain of trust. The architecture used here is
an outgrowth of work by Birrell, et al. [Birrell86].

Figure 6: Symbolic link MID with certification cross link.
CA-BOT certifies CA-MID-2

10. Delegation
When a user authenticates himself to a work-

station, the user at the same time delegates to the work-
station the right to speak on behalf of (act as a surro-
gate for) the user. This delegation is expressed in a
certificate signed by the user’s smart card at login.
Delegation does not require any modification of ACLs.
When the workstation accesses a remote service the
workstation presents the delegation certificate to prove
that the user authorized the surrogate. Note that remote
access through a workstation does not require the re-

mote system to reauthenticate the user. (The smart card
does not play a role in any subsequent authentications
or delegations.) Instead, the delegation certificate tells
the remote system that the smart card trusts the work-
station to accurately reflect the user’s commands. The
remote system may wish to also authenticate the local
workstation, however, using a challenge/response.
Where there is a cascade of systems involved, each
system delegates to the next system the right to act on
its behalf (or the right to issue statements on behalf of
the user), thereby propagating the ability to act as a
surrogate for the original user.

Once the user delegates rights to a system, that
system can act on the user’s behalf even after the user
logs out. To limit the damage in the case of a subse-
quent malfunction or compromise of a system, a prop-
erly functioning system terminates the delegation when
it is no longer needed (e.g., at the end of a session) by
destroying its copy of any secret key generated for pur-
poses of that delegation and by notifying the parties
with which they were communicating to no longer
honor the delegation. (We assume users trust their sys-
tems while they are using them, but not necessarily
after they logout.) As a backup, in case of system mal-
function, delegations also time out, the timeout being
set when the delegation is made. It is the responsibility
of the system enforcing access to honor the timeout and
delegation termination.

A delegation to a system implies the system may
make any statements at all on behalf of the delegator.
While restricted delegation, where the user specifies
only a subset of statements such as a list of specific
objects that may be referenced, seems desirable, the
types of restrictions that might be useful are highly
application-dependent and cannot be specified by a
security architecture. Instead, we use the concept of
user roles for such restrictions. A user authenticates
himself using a DNS name that is the name of one of
several possible roles, and these roles are represented
as one-member groups in DNS, all containing the ac-
tual user name in their membership list. By delegating
the rights of a specific role the user delegates rights to
access only those objects that list the role on their
ACLs.

11. Revocation
The architecture provides for a high degree of as-

surance that access is only granted when authorized.
But once granted, revocation of access is not provided
with the same degree of assurance. Although revoca-
tion is required and supported, the revocation may not
take place in a guaranteed amount of time or before
any specific event, and there is no absolute assurance
that it will ever take place (except that there is usually



some timeout or expiration that places an upper bound
on the duration).

There are several things that one can imagine be-
ing revoked, all of which ultimately affect whether a
principal has access to an object: access rights on
ACLs, group membership, certificates for authentica-
tion, certificates for delegation, and authentication.

Immediate revocation is a difficult problem be-
cause it requires that either (1) systems not cache any
information used to make access control decisions
(public keys, group membership, ACL rights), or (2)
there be a mechanism that reliably informs all systems
using the access control information when a change has
been made. Implementing (1) has an unacceptable ef-
fect on performance, and (2) is impractical since no-
body can keep track of who is using the access control
information.

Instead of immediate revocation, the architecture
allows for “slow” revocation, where an application-by-
application decision is made as to when, after a request
to revoke, the revocation takes place. Most likely revo-
cation will be determined by events: e.g., the next time
a file is opened, the next time a user logs in, or when a
delegation expires. Delayed revocation should be im-
plemented in a way that causes users no surprises. Us-
ers maintaining ACLs, for example, might be informed
that revocation has no effect on processes that currently
have the file open.

A system is permitted to parse an ACL in advance,
including expanding all groups named on an ACL, and
to save that information for subsequent attempts by a
principal to access the object. Removing a principal
from a group or from an ACL will affect some subse-
quent access but is unlikely to affect accesses in pro-
gress. However, if (for example) the effect of this ad-
vance computation results in a user’s access request
being satisfied next time he logs in, even though he has
since been removed from the group, then this imple-
mentation is not permissible unless a way can be found
to convince users that such behavior is reasonable.

Certificates used for authentication expire, but on
occasion a certificate needs to be revoked in advance
because a principal’s private key has been compro-
mised, or because the person changes affiliation and
can no longer be trusted to access objects on whose
ACLs he is listed. Certificates for authentication are
stored in a few well-known places (most likely, in
DNS), and all services that use certificates will look for
them in these well-known places. Revoking a certifi-
cate means deleting each copy of the certificate from
these places. This deletion is somewhat unreliable be-
cause DNS directories are replicated, but if DNS is
functioning normally the changes will propagate to the
copies in a reasonable amount of time. The certification
structure in ISO’s directory authentication framework

[CCITT88b] also depends on the directory for the “se-
curity” of certificate revocation.

A system may cache a certificate (or the informa-
tion in a certificate) but should periodically check the
well-known places to determine whether the cache is
still valid. Other techniques, such as checking the time
a directory was last modified, can be used to make this
process more efficient. A properly functioning system
will not accept a certificate from any source other than
a DNS server whom it trusts for revocation. In particu-
lar, the authentication dialog does not include transmit-
tal of authentication certificates in place of those that
should be obtained from DNS. In the event of com-
promise of a DNS server, or inability for a system to
contact a server, revocation will not work.

Authentication cannot be revoked. Once a certifi-
cate has been used to authenticate a principal, that au-
thentication is valid for as long as the original certifi-
cate was valid, or until the system chooses to stop us-
ing the authentication. Since authentication tends to
happen at the beginnings of sessions when secure
channels are created, authentication is not useful be-
yond the end of a typical session, and properly func-
tioning applications that expect sessions to last for days
or weeks should probably reauthenticate at intervals
commensurate with the interval at which they check
DNS directories for changes in certificates.

Like authentication, delegation times out but can-
not be revoked once granted. However, delegation
timeouts, tied to the lifetime of most sessions, will be
far shorter than the certificate timeouts on which au-
thentication depends. Both authentications and delega-
tions are erased when no longer needed (at the ends of
sessions).

Because delegation timeouts are relatively short, it
is possible that a delegation will have to be renewed
during a session before it times out. A facility is pro-
vided whereby such a renewal can be initiated by the
first system in the delegation chain and propagated to
other systems in the chain, provided that the user’s
smart card is still in place to sign a new certificate.

12. Mandatory access controls
The goal of the architecture is to provide manda-

tory (non-discretionary) access controls in all systems
that implement discretionary access controls, but it is
realized that some systems will never be used in a
mandatory control environment and so implementation
of mandatory controls is optional. Even if not enforcing
mandatory controls, systems should be compatible with
those that do.

DoD-style mandatory security as specified in the
TCSEC is supported through labeling mechanisms con-
trolled by the individual reference monitors. Every
object and subject under direct control of a reference



monitor has one or more access class labels, and man-
datory access to local objects by local subjects is en-
forced in the usual manner.

A request originating from a remote system con-
tains an access class label specified by the remote ref-
erence monitor, corresponding to the access class of the
remote subject making the request. The local reference
monitor uses this label, along with additional informa-
tion about the remote reference monitor, to determine
whether to allow the access. This additional informa-
tion consists of certificates (obtained from DNS in a
manner similar to the authentication certificates) that
specify the policy domain and set of access classes for
which the remote reference monitor is responsible.
Access is granted only if the policy domain is appro-
priate (this domain may include information about the
level of assurance of the remote system) and if the ac-
cess class on the request is within the permitted set.
The “cascading problem” discussed in the TNI
[NCSC87] cannot be fully prevented except by system
configuration, because none of the systems participat-
ing in the potential unauthorized write-down of infor-
mation can be trusted to prevent it.

It is our intent to specify a commercial integrity
architecture, perhaps based on the Clark and Wilson
model [Wilson87], but work in that area remains to be
done.

When both discretionary and mandatory access
controls are applied to an access request, if either set of
controls would disallow the request, then access is de-
nied. In contrast to discretionary access controls,
changes to mandatory access control attributes of prin-
cipals and objects must take effect immediately. For
example, security violations could occur if a request to
“downgrade” or “upgrade” an access class does not
immediately abort any accesses in progress that might
no longer be allowed. The difficulty of implementing
immediate revocation is mitigated by the fact that
changes to mandatory attributes are rare, as noted
above.

13. Problems not covered
The security architecture does not address all secu-

rity concerns in computer systems. It concentrates on
security problems that are unique to or exacerbated by
distributed systems, such as authentication, secure
communication, and global access control. Other prob-
lems in developing useful distributed systems, whether
or not they have to do with security (such as global
naming, synchronization, distributed databases, and
assurance) are presumed to be addressed by other ef-
forts, and a practical implementation of the security
architecture may require solutions to problems in these
other areas.

14. Status
The security architecture is intended for imple-

mentation across the entire Digital product line, includ-
ing all operating systems, applications and hardware
components. Any product acting on behalf of multiple
users, or needing to take part in access control deci-
sions, is affected by the architecture. When in place,
the architecture will discourage the implementation of
ad hoc, duplicative, and inconsistent security mecha-
nisms in Digital software and hardware products. Of
course, the security mechanisms will also be made
available to customers for use by their own developers.

At this time of writing the details of the architec-
ture (protocols, message formats, algorithms, etc.) are
under development—little implementation has begun.
Most of the groundwork and formal logic has been
worked out, and functional specifications have been
written.

References

[Ames83] Stanley R. Ames, Jr., Morrie Gasser, and
Roger R. Schell, “Security Kernel Design and Imple-
mentation: An Introduction,” Computer, Vol. 16, No.
7, July 1983.

[Birrell86] Andrew D. Birrell, Butler W. Lampson,
Roger M. Needham, and Michael D. Schroeder, “A
Global Authentication Service without Global Trust,”
Proceedings of the 1986 IEEE Symposium on Security
and Privacy, IEEE Computer Society, 1986.

[CCITT88a] International Telegraph and Telephone
Consultative

Committee (CCITT), X.500, The Directory - Overview
of Concepts, Models and Services (same as ISO 9594).

[CCITT88b] CCITT, X.509, The Directory - Authenti-
cation Framework (same as ISO 9594-8).

[DOD85] Department of Defense, Trusted Computer
System Evaluation Criteria, DOD 5200.28-STD, De-
cember 1985.

[ISO88b] International Standards Organization, ISO
7498-2, Security Architecture.

[NCSC87] National Computer Security Center, Trusted
Network Interpretation, Ft. George G. Meade, MD,
July 1987.

[Rivest78] R. L. Rivest, A. Shamir, L. Adleman, “A
Method for Obtaining Digital Signatures and Public
Key Cryptosystems,” Communications of the ACM,
Vol. 21, No. 2, 1978.

[Wilson87] D. D. Clark and D. R. Wilson, “A Com-
parison of Commercial and Military Computer Security
Policies,” Proceedings of the 1987 IEEE Symposium
on Security and Privacy, IEEE Computer Society,
1987.




