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Ideas for a simple fast VAX

B.W. Lampson
20 October 1985

Six ideas are put together here to make a design for a 4 tpi VAX with a very
short cycle time, whose basic execution engine is simpler than Nautilus.
Other parts of the design will be at least as complex, so that the whole
machine will not be any simpler; in fact, if it has high-performance
floating-point, there will be substantial added complexity for that. The
hope is that the other parts are not critical to the performance, and hence
can be designed without having to squeeze out every nanosecond.

THE IDEAS

1) Cache the microinstructions for each VAX instruction as it is decoded.
Next time the VAX instruction is executed, these microinstructions (called
TIs, for translated instructions) can be executed without any decoding. The
first TI for a VI has a cache address computed from the PC, so a branch can
be translated into the proper value for the NEXT field of the TI. Thus
unconditional branches take no time. Conditional branches are delayed one
cycle; normally this cycle is wasted.

I proposed this idea earlier, using a RISC as the translation target, rather
than microcode; this was called VOR. That design proposes how to do the
translation, and how to invalidate it if a store is done to the VI, using
sequence numbers. Thos ideas apply to this proposal too. The VOR design
also deals with how to get by using a RISC very much like the Titan; that is
not necessary in the new proposal. However, it is necessary to use fairly
short micro-instructions (say 50 bits), so there can't be too much more in a
microinstruction that what the Titan or Prism has, plus a NEXT field.

Since there is only a 2.5% miss rate for instruction fetch with a
Nautilus-sized cache, translation doesn't have to be blindingly fast.

1 assumed 12 cycles in the performance calculation, 4 for the cache miss and
8 for the translation, but slowing translation down 4 cycles only adds 0.1
tpi.

There's a question about how to allocate TIs beyond the first for a VI,
Looking at some Nautilus cache simulations that show <20% of the cache
filled at the 5000 VI context-switch point suggests a FIFO buffer. If the
Nautilus cache is 50% instructions, and one VI is 2.5 TIs (see the
performance section below), we get 16k x 20% x .5 x (2.5-1) = 2.5 k of
excess TIs. So with a 4k buffer, we could afford to flush the whole TI
cache when it filled up. This is attractively simple. But there are many
other possibilities; one is given in the VOR design, but it has a lot of
fragmentation.

2) Use a two-level cache in the processor, backed up by the very large, 4
cycle cache already proposed for Argonaut. The two-level cache has a 1k x
32 fast part, and a 16k x 32 slow part. The fast part goes in 1 cycle, the
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slow part takes 2. The idea is that every address is presented to both
parts; if the fast part misses, the slow part sees the address for 2 cycles
and delivers the data, which is written into the fast part at the same time.
Thus it costs 1 cycle for every fast miss. A slow miss costs 4 cycles at
least. Writes are done to both parts, so back-to-back writes cause a
l-cycle stall, as does a fast miss in the cycle after a write.

The TI cache is arranged the same way, but 50 bits wide. The slow part also
stores fixed microcode, which is hand programmed rather than generated by
the translator to do complicated things llke TB misses, character
instructions, etc. If the translation isn't there, I assume that the VAX
instructions are fetched from the 4-cycle cache and retranslated. The slow
part might want to be 64k x 50, and 64k x 1 RAMs might be fast enough.

The advantage of this scheme is that it allows the fast cache to be fairly
small, 4 KB, hence both faster and more compact that otherwise. Made out of
lk x 4 RAMs, the RAM delay is 5 ns (7 ns ?), rather than 10 ns for a 16k RAM,
and it's a quarter the number of chips needed for a 64 KB cache. Note that
a miss rate of R in the fast cache means that every cache reference is
slowed down by R cycles. If the faster small cache allows the cycle time to
be faster by R, we break even. Thus a 20% miss rate in the fast cache leads
to a faster machine if the cycle time can be less that .8 of what it would
be with a bigger single-level cache. And this argument is very
conservative: it assumes a cache reference, with associated chance to miss,
in every cycle. Of course there will be a TI cache reference in every
cycle, but that isn't true for the data cache, and its timing is probably
more critical.

3) Use a virtual cache. Keep a sequence number (SN) in the TB and in the cache
entry, and compare these as part of the cache tag comparison. Whenever the
TB entry is reassigned, the SN is incremented. This ensures that .only cache
entries with a TB entry are valid. In addition, keep a reverse TB (RTB)
that maps from real to virtual addresses. On a TB miss, the page must be
put into RTB also. This may displace a TB entry already in RTB; in that
case the SN of that TB entry is incremented to invalidate any cache entries
that depend on it, and it is removed from the TB. The RTB needs to be big
enough that it has little effect on TB miss rate. However, it doesn't need
to be fast, since there is at most one access per write on the NMI; plus 1
per TB miss.

Perhaps there is another way to get a virtual cache. This one seems simple.
The remaining three ideas are mainly relevant for fast floating-point.

4) Have a separate F-box with its own copy of the registers, organized for
convenience in doing floating point. This might mean separate register sets
for F and G formats, for example. Keep track for each register of which
register set (E, F or G) has a valid copy. After a clear, all will;

after any other operation only one will., Have explicit TIs to move data

from one register set to another. The TIs refer to a specific register in a
specific register set, e.g. E3 or G7. If a TI references a register that isn't
valid, force retranslation. The translator knows which registers are valid,

and generates the necessary explicit MOV TIs to get data where it's needed.
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Obviously it is necessary to validate my assumption that forced
retranslation for this reason would be rare; note that it only happens when
the same VAX instruction reads a register that is sometimes loaded by an
integer operation, and other times by a F or G operation.

This scheme also allows F and G results to be maintained separately, again
with explicit MOVs generated in the (hopefully non-existent) cases where a
register pair set by a G instruction is referenced by an F instruction.
Thus there.can be 16 64-bit G registers; when R6/R7 is loaded from a G
instruction, the G6 register would be loaded. G7, F6 and F7 would become
invalid, as well as E6 and E7.

The F-box can have its own data cache, 64 bits wide. Thus all its
operations can proceed at full speed, without the need to serialize data
transfers on a 32-bit bus, or to copy data back and forth to the E registers
in the normal case that it isn't referenced by any non-floating instruction.
The implementation proposed below has only data RAMs in the F-cache -- all
the tags and control are in the E-box data cache.

The stores done by CALL and context-switching will require some special
treatment. It is possible that other loads and stores need more careful
handling also if the compilers move floating data with L or Q instructions
rather than F or G instructions; hopefully they don't.

With this F-box we could do pretty good vector instructions too.

5) Implement condition code bookkeeping that allows the processor to go
ahead even though an instruction that sets the CC hasn't completed, and
forgets about the deferred CC setting if a later instruction writes the same
CC. I have worked this out, and it doesn't look too messy. Basically,
there is propagate logic on each CC bit which keeps track of whether the bit
has been set since the instruction i cycles back; if not, then when that
instruction reports a value, that becomes the CC value. The resulting
structure looks like the carry propagation of an adder. Of course if
someone tests the CC there must be a stall.

6) Take advantage of the fact that with a write buffer and a ~
changed-register log longer than one instruction it is possible to undo the
effects of execution as far back as the capacity of the write buffer and the
log, even in a multiprocessor. The only hard constraint is the execution of
synchronization instructions, or other operations that require the write
buffer to be flushed. These are rare. Thus execution of floating point
need not be delayed for the precise exceptions. If an exception does occur,
the instruction can be retried.

For whatever it's worth, this observation also allows aother instruction

sequences to be retried even if their errors are detected long after
execution was complete. Some people seem to think that this is valuable.

IMPLEMENTATION

The goal is to get the shortest possible cycle time consistent with doing a
Titan-like instruction in each cycle, with a pipe of length 3:
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instruction fetch
register read, address add, start_ALU _
cache read/write, finish ALU, register write

This is the same timing as the Titan. To achieve it, the execution engine
has to be compact. I suggest the following arrangement:

T“"“‘T<—ct1——T‘__—""T<——BR—JT'_"____T< ————————— CC-——====-=-- T““"’T
I I I x| I
| T |-TIs-->| |--TIs->| E =< --------- FE---------- >= F :
| I I
I I I [ I I I I I I
~ PA VA ~ D D ~
I I I | I | I
I \/ v I v v |
I T T | T T I
I A | | W I
| I I | . I |
| | | | I
I |
D A D AD D
| I | | I
| \/ \/ \ \/
NMI

Here the translator T plays the role of the I-box, A holds tags, most of the
TB, and other non-data memory-related stuff, and W is the write buffer.

We try to put in E everything required for execution of non-floating
instructions in the normal case of no misses. This is the following:

the data part of the fast TI cache 50 bits - 13 1k x 4 RAMs
the data cache, fast and slow 33 data bits 9 1k X 4 RAMs
: 9 16k x 4 RAMs
32 tag bits 8 1k X 4 RAMs
(addr + SN) 8 16k X 4 RAMs
¥
the register file 32 x 32 regs 4 MCAs ??

the ALU and shifter
the TI branch logic

The intention is for this to fit on one module. The tags for the fast TI,
and the slow TI, are on X. The idea is that E plunges ahead fearlessly
fetching TIs from its fast cache. If X sees that the tag doesn't match, it
signals E to stall before the end of the execution pipe, when the registers
are written. Then it supplies a new TI, after 1 cycle if it comes from the
slow TI cache, much later if retranslation is needed. So E provides
do-branch information to X, and gets told what to do on any kind of miss.
Since X has to keep its idea of the TI PC up to date, it has to contain a
copy of part of the fast TI data, namely the NEXT field.



Oct 20 20:50 1985 fastvax.txt Page 5

There might be a hiccup on a taken branch if the fast TI misses (i.e. a 2
cycle rather than 1 cycle stall), but this would be a fairly good tradeoff:
an extra cycle when a miss (20%) coincides with a taken branch (1/tpi x 25%
< 10% ), or <2%.

F gets instructions from E, and therefore runs either 1/2 cycle or 1 cycle
behind. This hurts only on branches that test CC set by F. X keeps track
of CC.validity, since it knows all the timing and can stall E when needed.

A memory write done by F must invalidate E's cache, and vice versa; since

E decodes all the instructions and contains all the cache tags, this should
be easy. The idea is to just have the data in the F cache, keeping F simple
and avoiding complications about multiple copies. So normally the
instruction and the 14 or so bits of cache address are sent from E to F on
the FE bus. This bus is also used to transfer data back and forth, using
explicit MOV TIs.

PERFORMANCE

The following attempts to calculate the perforﬁance of this design from the
data in Clark and Emer. The numbers that seem questionable to me are
indicated. What has been overlooked?

From C&E table 2, percent of all instructions that branch unconditionally,
or can be assumed to branch with high probability (i.e. loop branches),
and for which the branch address is known at translation time:

Simple 2
loop 3
lowbit 0
subr 2 calls only
JMP 0

CASE 0

bit 1

proc 1 calls only
system 0.2 CHM only

total 9.7 -

Taken conditional branches and computed branches is 25.7-9.7=16.0
This number is used in table 8 below.

From C&E table 4, execution time for specifiers:

specifier # TIs time per avg specifier

literal 0 0

immediate 1/2 0.03 ? >16 bits will take 2

displ 1/2 0.31 25% are >16 bits and take 2 TIs
reg deferred 1 0.09

auto-inc 2 0.04

disp deferred 2 0.05

absolute 1/2 0.01 ? >16 bits will take 2

auto-inc def 3 0.01
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auto-dec 2 0.02
indexed 1 0.06
total 0.62
.62 x 1.5 .93 cycles/VI for specifiers

10 x .016 .16 cycles/VI for unaligned ops

These numbers are used in table 8 below.

From C&E table 8

Ins class frequency, % TI/occurrence cycles/VI (not counting stalls)

Decode 100 0 0 p Teagen Desdha

specifiers 150 [1.5/VI] 0.62 [table 4] 0.93 ]

unaligned refs 1.6 10 [made up] 0.16 [table 4]

B-disp 31 0 0 08 Q’\rYwhhmﬁm 8L\J
_———— : Il i

Total for specifiers 1.09 j Foboros

simple 84 0.6 [1] 0.5 Lfi xl*f o7

field 7 2 [2] 0.14 27?2 |

float 4 2.5 [3] Ool -:’. Ndy)n\:,;

call/ret 3 15 (4] 0.45 Nig

system 2 12 [5] 0.25 g

character 0.4 60 [6] 0.25

decimal 0.03 100 (7] 0.03

Total for direct execution 1.68

(roughly equal parts simple, call/ret, sys/char)

branch latency 16 [8] 1 0.16

fast TI miss 20 [9] 17a 0.2 .

retranslation 2.5 [9] 12 0.3 (

fast data miss 20  [10] 1 0.2 3 ke 10 o codn
slow data miss 2.5 [10] 4 [11] 0.1 :

TB miss 1 [12] 20 [13] 0.2 ~ W

error in times for system and char ins 0 2?22 [5, 6]
exceptions/aborts 0.1 [14]

Total for overhead 1.26

Total cycles per VI 3.97

Notes to table

[1] MOV is 40% of simple instructions and takes 0 TIs (except for RR MOVs).
Assume other simple VIs take 1 TI.

[2] 1 for extract, 3 for insert, others unclear. More if the field crosses

a LW boundary. Much more if the field position and size are not constant.
Need more data to get this right.

()J\/\k J(\A’K(J ,()'\/ L "w,/,. 1f}' . b :’_ Uk [,/,,JU

-
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[3] with shadowed registers and accelerated CC handling.

[4] 8 reads or writes on average. At 2 cycles each, the writes in CALL take
16 cycles, or about 18 altogether. At 1 cycle each, the reads in RET take 8,
plus 3 to check that the mask hasn't changed, plus 2 for RET from CALLs
(half?), or 12.

[5] Half the number of cycles used in the 780. I just made this up.

[6] Half the number of cycles used in the 780, but also 3 cycles per memory
operation done. I just made this up.

[7] Same number of cycles used in the 780.

[8] From extension to table 2; these are taken cond branches (other than
loops), plus all branches with computed addresses. UC branches with known
addresses have 0 latency.

[9] From Steely's Nautilus write buffer memo, giving 20% misses for a 1 KB
CVAX cache (assuming that 4 KB of TI cache is worth about as much as 1 KB of
VI cache; since the CVAX cache stores data also, this is probably
conservative) and 2.5% for Nautilus cache. His 780 numbers agree pretty
well with Clark and Grady. The slow miss is 4 cycles to get to the huge
cache, and I arbitrarily added 8 cycles for the translation, which is
roughly 3 per TI generated.

[10] Clark and Grady for fast miss; they show 83% read hit in the 8 KB
cache, 76% in the 4 KB cache on the 780. 1In both cases the cache is shared
with instructions. Same source as [9], Nautilus number for slow miss. A VI
makes one data reference.

[11] Assuming the multi-megabyte slow cache hits all the time and takes 4

cycles in addition to the 1 cycle paid for the fast miss that precedes the
slow miss. If it misses .5% of the time, and main memory takes 25 cycles,
this adds .1 tpi.

[12] Clark and Grady show 1% process TB misses on thei780. It should be
possible to get system TB misses very close to 0. ~

[13] Same number of cycles as 780.

[14] 780 has 0.2, but 2.5 x the tpi. Assuming these go per cycle; not clear
how to defend this, however.

General notes on performance

Nearly 25% is in various kinds of miss, comparable to 780.
In more detail, 780 has 1.4 tpi in R/W stall, .7 in IB stall. This has .3 in
R-stall and .66 in IB stall.

About .6, or 15%, is in misses that would be drastically reduced with a
longer context-switch interval (slow and TB miss). This means that the best
we could hope do to with an infinite CS interval is 3.2 tpi. This isn't as
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important as I thought.

About .4 or 10% is in fast misses. This measures the extent to which the
fast part of the two-level cache is imperfect. It means that the fast cache
pays off if it allows the cycle time to be reduced by more than 10%.

At 20 ns cycle, we get 27.5 x 780. At 16 ns, it's 34 x.

About .45 of the overhead is in single cycles, i.e. definitely costs more if
we have a longer cycle that does more. The rest is in multi-cycle stuff that
might take fewer cycles if they were more powerful. Since nearly all of the
direct execution is in single cycles, it's clearly best to have the cycle
time short, as usual.

How much better could a pure RISC do? We give no credit for a shorter cycle
time, or faster execution of RR type instructions, since we have optimized
for this.

60% utilization of branch latency cycle (.6 x .16) .1
4 vs 12 cycle slow miss, since no translation (8 x .025).2
90% saving in call/ret, assuming register windows

that work 90 % of the time (.9 x .45) . .4
60% reduction in memory references by specifier

because of larger number of registers, and register
windows for passing arguments (.6 x .9) .5

Total 1.2 or 30%

I tried to make this favor the RISC as much as possible, to get an upper
bound on the performance gain. The 60% reduction in memory operands is
consistent with 2 RISC instructions/VAX instruction and a memory reference
in about 20% of RISC instructions, reported by a couple of people. But this
is very flaky. The guesses that say a RISC is 2x a:VAX don't assume this
much reduction in memory traffic, I believe.

In addition, the RISC doesn't need the virtual cache complications, or the
translator complications, so it is a significantly simpler machine to design.
Of course, the VAX doesn't need the virtual cache complications either if

the OS would align the pages properly.



