

1/19

An Online Editor1

L. Peter Deutsch and Butler W. Lampson
University of California,2 Berkeley, California

This paper has been reconstructed by OCR from the scanned ver-
sion in the ACM Digital Library. There may be errors.

An online, interactive system for text editing is described in detail,
with remarks on the theoretical and experimental justification for its
form. Emphasis throughout the system is on providing maximum
convenience and power for the user. Notable features are its ability
to handle any piece of text, the content-searching facility, and the
character-by-character editing operations. The editor can be pro-
grammed to a limited extent.

Introduction

One of the fundamental requirements for many computer users
is some means of creating and altering text, i.e., strings of charac-
ters. Such texts are usually programs written in some symbolic
language, but they may be reports, messages, or visual representa-
tions. The most common means of text handling in the last few
years has been the punched card deck. Paper tape and magnetic
tape have also been used as input, but the fact that individual cards
can be inserted and deleted manually in the middle of a deck has
made the keypunch the most convenient and popular device for
text editing.

With the appearance of online systems, however, in which text
is stored permanently within the system and never appears on ex-
ternal storage media, serious competition to the punched card has
arisen. Since the online user has no access to his text except
through his console and the computer, a program is needed, how-
ever minimal, to allow him to create and modify the text. Such a
program is called an editor and presupposes a reasonably large and
powerful machine equipped with disk or drum storage. The user
therefore gains more convenience than even the most elaborate
keypunch can provide. The characteristics of a good online editor

1 Communications of the ACM 10, 12 (December 1967), pp 793-803
2 Project Genie. The work described in this paper was supported by the Advanced
Research Projects Agency of the Department of Defense under Contract SD-185.

2/19

and some of the techniques which can be used in implementing it
are the subjects of this paper.

The number of such editors known to the author is not large.
Time sharing systems on the 7094 at Project MAC [1] and the
AN/FSQ32 at the System Development Corporation [2] have them,
and at least two have been written for the PDP-1 [6]. The present
paper is built around a description of the editor in the Berkeley
time sharing system for the SDS-930 [3, 4], which is called QED.
An attempt is made to discuss all the valuable features which have
been built into editors for teletypes or typewriters, with the excep-
tion of the “runoff” [1] facility for producing properly formatted
final documents. Systems for CRT displays are not considered,
since many of their design considerations are quite different.

The most important characteristic of an editor is its conven-
ience for the user. Such convenience requires a simple and mne-
monic command language, and a method of text organization
which allows the user to think in terms of the structure of his text
rather than in some framework fixed by the system. In view of the
speed and characteristics of a teletype, there are substantial advan-
tages to a line-oriented system. However, the physical mechanism
of the teletype makes it difficult to deal with individual characters,
and the speed makes a larger unit somewhat inconvenient.

Fortunately, line orientation does not impose any restrictions
on the text which can be handled by the editor, since all forms of
text fall of necessity into lines. Preservation of this generality is
one of the important design criteria, and it will be seen from the
description below that very little has to be sacrificed to this end.

In order to allow the user to orient himself in the text, the con-
cept of searches or content addressing has been introduced. In its
simplest form, a content address allows the user to reference the
lines of his text by the labels which he has naturally attached to
them in the course of the construction. More general searches al-
low him to find occurrences of specified strings of characters. This
device allows the user a maximum amount of freedom to arrange
his text as he sees fit without compromising his ability to address
it. Many particular conventions can be accommodated within the
general framework.

The basic characteristics of QED are line organization and con-
tent addressing. For the casual user of the system, four or five
commands and understanding of the addressing scheme will pro-

3/19

vide ample power. A more frequent user will, however, be able to
make good use of additional features, which include: (1) a line ed-
iting mode which permits character-by-character editing of a line;
(2) buffers for storing frequently used text or command sequences;
(3) a substitute command; (4) the ability to save a set of editing
commands and later repeat the edit automatically; (5) automatic
adjustable tab stops.

Another important consideration in the design of QED has been
simplicity of implementation. The original version of the system,
admittedly without many of the elaborate features, was designed,
written, and debugged by one man in less than a week, and the en-
tire program now occupies less than 4000 words of reentrant code.

Basic Editing Operations
QED regards the text on which it is operating as a single long

string of characters called the main text buffer. Structure is im-
posed on this string by the interpretation of carriage returns as line
delimiters. Lines can be addressed by absolute line number, and
the characters on line n are those between the (n — l)st and the nth
carriage returns, including the latter but excluding the former. The
line number of a particular line may, of course, change if carriage
returns are added or deleted earlier in the buffer. These absolute
line numbers are in principle sufficient, together with three simple
commands, for any editing operation. All the other devices for ad-
dressing text are syntactically equivalent to line numbers; i.e., any
address can be replaced by the line number of the line it addresses.
It will be convenient in the remainder of this section to take advan-
tage of this fact and defer discussion of other addressing mecha-
nisms until the basic commands have been presented.

The normal state of the editor is its command mode. Whenever
this mode is entered, it prints a carriage return and a “*” to indicate
its readiness for a command. The other modes are text mode and
line edit mode; they will be explained in turn.

All commands take one of the following forms:
(command)
(address) (command)
(address), (address) (command)

Some commands also take additional arguments. The com-
mand itself is in most cases specified by a single letter. The time
sharing system in which the editor runs allows programs to interact

4/19

with the teletype on a character-by-character basis, and the QED
command recognizer makes use of this capability to supply the re-
maining letters of the command. This has proved to be a valuable
aid to the beginning and to the occasional user of the editor. An
expert user can suppress the command completion.

After a command has been given, it must be confirmed by a pe-
riod. The teletypes used in the system are full duplex, so that the
period may be typed in while the command is being completed. It
is therefore unnecessary for the user to synchronize his typing with
the computer’s responses.

The three basic editing commands are INSERT, DELETE, and
PRINT. An insert command has the form

*12INSERT.
The computer generates a carriage return and goes into text

mode, in which it will accept a string of characters to be inserted in
the text immediately preceding line 12. The text is terminated by a
teletype control character, control D, which is generated by hold-
ing down the CONTROL shift key and pushing the “D” key. (Con-
trol characters appear in boldface type in this paper.)

The existence of control characters, which do not, with a few
exceptions, produce any effect on the teletype, makes it possible
for the user to give instructions to the editor while he is in text
mode without any escape character convention. In addition to D
for terminating text input, three delete characters are available. A
deletes the last character typed which has not already been deleted
and Q the last line. The third delete character, W, deletes a word,
which is defined as all the immediately preceding blanks and all
the characters up to the next preceding blank. These characters
permit the immediate correction of minor errors in text input.

Although the delete characters themselves are nonprinting, it is
desirable that something should appear on the paper when they are
used, since otherwise it becomes very difficult to keepi track of the
state of the text being entered from the keyboard. It has therefore
been arranged that A will cause a “↑” to be printed, Q a “←”, and
W a “\”. This convention has the unfortunate result that text con-
taining these characters becomes confusing when the delete char-
acters are used. No confusion is possible, however, when the text is
typed out by the editor.

5/19

Another important feature of QED’s text mode is the tab stop.
The user can set tab stops to any positions he desires, using the
TABS command. For example:

*TABS.
5, 10, 15, 20.

After the command has been given, there are tab stops at posi-
tions 5, 10, 15, and 20 on the line. Thereafter the character I (la-
beled TAB on the keyboard) will generate enough blanks to bring
the printing element of the teletype to the next tab stop.

A command complementary to INSERT is DELETE, which takes
the form

*12DELETE.
and causes line 12 to be deleted from the text. Another form is

*12,14DELETE.
which causes lines 12, 13, and 14 to be deleted.

These two commands are sufficient for any editing operation.
The third basic QED command is PRINT, which may also be given
with one or two addresses.

*12PRINT.
prints line 12.

*12,14PRINT.
prints lines 12, 13, and 14. When a line is printed, all printing
characters (those in the teletype type box) are printed in their
proper sequence. Nonprinting characters such as control charac-
ters, are printed as

&(letter corresponding to the control character)
An editor must also be able to read in data from some storage

medium and write out data for later use. These functions are pro-
vided in QED by READ and WRITE commands, which take the form

*READ FROM PROG1.
and

*WRITE ON PROG1.
The READ command appends the contents of the file to the

main text buffer. The WRITE command may be preceded by two
line numbers, in which case only the specified portion of the text
will be written out.

Figure 1 illustrates the creation and correction of a small pro-
gram using the commands which have just been described. It also
makes use of the APPEND command, an INSERT which puts the new
text after the line addressed. An APPEND with no argument puts the
text at the end of the buffer. Perusal of this example will suggest

6/19

the utility of a number of additional conveniences in the editor.
The simplest of these is the CHANGE command, which combines
the functions of INSERT and DELETE. In fact,

*12CHANGE.
is exactly equivalent to

*12DELETE. *12INSERT.
Like DELETE, CHANGE can be used with two line numbers. The

number of lines inserted has no relation to the number of lines de-
leted.

Two minor extensions of PRINT are single-character commands
to print the next line of text (line feed) and to print the preceding
line (↑). There is also a command which prints the text in pages 11
inches long; it provides page headings and numbers if requested.

In the original implementation of QED, the main text buffer was
stored as a string of consecutive characters in memory. This simple
storage allocation scheme makes it easy to implement the com-
mands so far discussed. A deletion, for example, is accomplished
by moving the character following the deleted section towards the
beginning of the buffer to cover the ones being deleted. See Figure
2.

Insertion is slightly more complex. The text to be inserted is
collected in a special storage area. When it has been completely
typed in, the characters after the point at which the insertion is to
be made are moved far enough toward the end of the buffer to
make room for the new text, which is copied into the space created
for it.

Only three pointers to the text are maintained by the system:
one to the beginning of the buffer, one to the end, and one to the
current line. This means that no readjustment of pointers is re-
quired by the displacements described above.

7/19

* APPEND.
10 REARA t D, 100, N
 SUM = 0
 DO 20 I = 1, 1, N
D
*1DELETE.
*1INSERT.
10 READ 100, N
D
*APPEND.
 READ 101, X
20 SUM - SUM Q•
20 SUM = SUM + X
 WRITE 201, S, W\101, SUM
100 FORMAT (61)
101 FORMAT (F10.5)
 END
D
*7DELETE.
*7INSERT.
100 FORMAT (16)
D
*3DELETE.
*3INSERT.
 DO 20 I = 1, N, 1
D
*1,9PRINT.
10 READ 100, N
 SUM = 0
 DO 20 I = 1, N
 READ 101, X
20 SUM = SUM + X
 WRITE 101, SUM
100 FORMAT (16)
101 FORMAT (F10.5)
 END

FIG. 1. Example of basic QED commands. Note that control characters (in bold-
face here) do not print anything

8/19

When the amount of text being edited becomes large, these
simple algorithms begin to become unattractive in terms of effi-
ciency. This problem can be alleviated, however, by dividing the
text into artificial pages and leaving a reasonable amount of free
space at the end of every page. The effect of nearly all the dis-
placements discussed above can then be confined to a single page.
When large insertions or deletions are made it may be necessary to
redo the paging completely, but this is an infrequent occurrence.
Such a paging scheme is further recommended by the fact that it
permits most of the text to be kept out of main memory most of the
time. Only one or two pages need to be available for any single
editing operation.

Efficiency can be further increased, in a machine which is ba-
sically word-oriented, by storing each line in an integral number of
words. Since the line always ends with exactly one carriage return,
the last word can be filled out if necessary with additional carriage
returns without any possibility of confusion being introduced. This
arrangement greatly speeds up most searches and all insertions or
deletions, since the text can now be handled a word at a time. It
may also be convenient to keep the number of words in each line at
the beginning of the line.

All these improvements have been incorporated in the latest
implementation of QED. The result has been that most editing op-
erations, even on files of 50 or 100 thousand characters, can be
done with less than a tenth of a second of computation.

Addressing
As we have already noted, and as even the trivial example in

Figure 1 suggests, absolute line numbers are not a sufficiently

(a) Main text buffer before deletion

 line 1 line 12 (old line 15) line 37 (old line 40)

(b) After deletion

 line 1 line 12 line 15 line 40
FIG. 2. Action of the command *12,14DELETE

9/19

powerful addressing mechanism. An attempt to edit a 1000-line
program would illustrate this point even more forcibly. It is neces-
sary to be able to address a line by its contents as well as by its lo-
cation. The simplest way to arrange this is to provide each line
with a sequence number, generated either automatically by the edi-
tor or manually by the user. The lines are kept ordered by sequence
number and can be addressed directly. There are two objections to
this scheme.

(1) It requires the user to concern himself with an artificial de-
vice which has no relevance to his text but nonetheless intrudes on
it, wasting space and time on output and reducing its usefulness as
a document.

(2) Insertions and deletions will eventually force renumbering
of the lines. When this happens, a complete new listing must be
generated if the sequence numbers are to be of any use. Further-
more, as a result of this process numbers do not stay attached to
lines.

A more satisfactory scheme is a more general kind of content
addressing. In its simplest form this allows the user to refer to the
line

XYZ ADD =14
with the address :XYZ:. The meaning of this construction is that the
text is to be searched for a line beginning with the characters inside
the colons, with the requirement that they be followed by a charac-
ter which is not a letter or digit. A line such as

XYZA SUB = 24
will therefore not be found. The search begins with the line after
the one last accessed and continues, cycling to the beginning of the
buffer if it runs off the end, until a line beginning with the speci-
fied string is found, or until the entire buffer has been scanned. In
the latter case, QED prints “?” and awaits a new command.

This kind of content addressing, called label addressing, is
convenient for many kinds of text, including most programs. It is
also possible, however, to search for a line containing any string of
characters in any position by using the construct [(string)], where
(string) refers to any string of characters not containing “]”.

The usefulness of content addresses is enhanced by the fact that
they may be followed by integer displacements, positive or nega-
tive. Thus in Figure 1, the third line could be addressed in any of
the following ways:

10/19

3
6-3
10-9+2
:10:+2
:20:-2
[1 = 1]
[101, SUM]-3

since :10: refers to line 1
since :20: refers to line 5
since only line 3 contains the string “1=1”
since only line 6 contains the string “101, SUM”

The search can be started at any line, rather than at the current

one, by putting the starting line immediately before the search con-
struct. Thus in Figure 1, 4[I] would find line 6, as would
:20:[101].

Two minor devices offer additional convenience. The character
“.” refers to the current line and the character “$” to the last line in
the buffer. The “current line” is defined according to rigid rules
which are set forth in the listing of Table I. The reason for this
careful specification is that an experienced user of the editor makes
frequent use of “.” in performing insert and delete operations. If he
cannot be perfectly sure of its value, he is forced to print the lines
he intends to work on before doing the edits, which is very time-
consuming.

Another very useful convention is that “.” is assumed as the ar-
gument of a command which is given without one. Thus PRINT,
will print the current line. Exceptions to this rule are READ and AP-
PEND, which assume “$” unless told otherwise, and WRITE, which
assumes “1,$”.

Two minor commands permit an address to be displayed either
as an absolute line number (= command) or in symbolic form, as
the label of the nearest preceding line which does not begin with a
blank or asterisk, followed by an integer displacement (← com-
mand). Thus with the text of Figure 1 in the buffer, QED would re-
spond to :10:= with 1, to :100:= with 7, to 6← with :20:+1, to
[SUM+X]-1← with :10:+3.

11/19

Line Editing
Circumstances frequently arise in which it is necessary to make

small changes to a line already in the text: two or three characters
may need to be inserted or deleted. This is an area in which the
weaknesses of the teletype make themselves felt, and a truly satis-
factory solution can only be had with a display device on which the
user can point to the characters he wishes to change. There are, un-
fortunately, no mechanisms for addressing characters within a line
on a teletype which are not more trouble than they are worth.

QED does, however, contain a character editing mechanism
which provides many of the features a user might want. This power
has been purchased at the cost of considerable complexity; al-
though the basic idea of the line edit is simple, there is a profusion
of commands to speed up the handling of special cases which is
somewhat bewildering to the new user.

The command *12EDIT. will cause line 12 to be typed out, fol-
lowed by a carriage return. The editor is now in its line edit mode,
in which it will recognize a number of teletype control characters
in addition to the A, Q, W, and D which are normally recognized
when text is being typed in. The new characters are interpreted as
instructions for the creation of a new line from the old one which
was typed out. These instructions cause characters to be copied
from the old line into the new one, skipped over without being cop-
ied, replaced or inserted. When the new line is complete, it will
replace the old one, and QED will return to command mode. The
simple examples in Figure 3 will clarify the process.

TABLE I. Rules for determining the value of “.”

Last operation performed
Successful search
Unsuccessful search
Any insertion
Any deletion
Print or write

Value of “.”
Line found
Unchanged
Last line inserted
Line preceding first deleted line
Last line printed or written

12/19

The first example shows the use of C to copy characters and S
to skip over them. Note that when a character is skipped, a “%” is
printed so as to keep the new line aligned with the old one. When
an ordinary character is typed in, it replaces the corresponding
character in the old line. To save repetition of C, a Z causes the old
line to be copied up to and including the next occurrence of the
following character. Note that the latter is not printed when it is
typed in, but when it is reached in the line. This is accomplished by
suppressing the echo for the character after the Z, another applica-
tion of the full-duplex capabilities of the teletype. The result is that
the edited line continues to be properly aligned with the old one.

The second example illustrates the use of X to skip to the next
occurrence of a character; this instruction is exactly analogous to
Z. Also shown is the insertion of characters: an E causes ordinary
characters to be inserted rather than replace characters already ex-
isting. The E causes a “<“ to be printed. A second E will switch
back to replacing and print a “>”. Insertion of course spoils the
alignment. It can be restored with a TYPE instruction (T), which
types the remainder of the old line and the portion of the new line

old line
control characters input
ordinary characters input
output during edit
new line

old line
control characters input
ordinary characters input
output during edit
new line

old line
control characters input
ordinary characters input
output during edit
remainder of old line
new line so far
control characters input
ordinary characters input
output during edit
new line

BUSIE OLD FOOLE, UNRULY SUNNE

CCC SCCCCCCCCCSCCCCZ

 Y N

BUSY% OLD FOOL,% UNRULY SUN

BUSY OLD FOOL, UNRULY SUN

WHY DO YOU THUS,

Z X E D

O U ST THOU

WHY DO%%%%<ST THOU THUS,

WHY DOST THOU THUS,

THRU WINDOWS AND THRU CURTAINS CALL ON US?

CCCSE Z C C T

 OUGHO E ,

THR%<OUGH WINDOWES,

 AND THRU CURTAINS CALL ON US?

THROUGH WINDOWES,

 Z C Z D

 R O GHN E

THROUGH WINDOWES, AND THROUGH CURTAINES CALL ON US?

THROUGH WINDOWES, AND THROUGH CURTAINES CALL ON US?
FIG. 3. Examples of line edits.

13/19

so far constructed, and aligns the ends properly. The third example
illustrates this process.

A line edit is usually terminated by a carriage return, which
suppresses the remainder of the old line, or by a D, which copies
the remainder of the old line into the new line. Both are illustrated,
in the first and second examples, respectively.

Figure 4 is a list of the control characters recognized in a line
edit. The ones dealing with tabs are useful for editing one field of a
fixed-field line. Illegal instructions, such as Z followed by a char-
acter not in the old line, cause the teletype bell to ring and are oth-
erwise ignored. Characters typed after the whole of the old line has
been copied are appended to the new line, regardless of whether
the mode is replace or insert. Note that the escape character V al-
lows any character to be added to the text regardless of its normal
interpretation as a command. It works throughout the system, not
just in the line edit mode.

14/19

Character Function
A Delete preceding character in new line
N Delete preceding character in new line. Backspace pointer to old line if

deleted character was copied from old line.
W Delete preceding word
Q Restore old line
C Copy character from old to new line
S Skip character in old line, print %
Z Copy up to and including the next occurrence of following character
O Copy up to but not including the next occurrence of the following charac-

ter
X Skip up to and including next occurrence of following character, print %
P Skip up to but not including the next occurrence of the following charac-

ter, print %
T Type old and new lines
Y Copy remainder of old line to new one, without printing, and start edit

over on new line
H Copy to end of old line
I Tab, i.e., replace old line with blanks up to next tab
U Copy old line up to next tab
 (c.r.) Skip rest of old line and terminate edit

D Copy and print rest of old line and terminate edit
F Copy rest of old line without printing and terminate edit

FIG. 4. Line edit instructions

15/19

Figure 5 is a repetition of the edit performed in Figure 1. The
same errors are made, but many of the features described above are
used to speed the process. It illustrates the MODIFY command,
which is identical to EDIT except that it suppresses the initial print-
ing of the old line.

Substitution
An alternative method of altering a few characters in the mid-

dle of a line is the SUBSTITUTE command, which is modeled after
the CHANGE command in the Project MAC editor [1]. Its simplest
form is illustrated by the following example. Suppose the current
line is

NOW IS THE TIME FOR ALL GOOD MEN . . .
Then the user’s command
SUBSTITUTE /DAY/ FOR /TIME/ would result in
NOW IS THE DAY FOR ALL GOOD MEN. . .

* APPEND.

10 REARA•D, 100, N
 SUM = 0
 DO 20 I = 1, 1, N
D
*:10:MODIFY.
ZD SD
10 READ% 100, N
*APPEND.
 READ 101, X
20 SUM - SUM Q•
20 SUM = SUM + X
 WRITE 201, S, W\101, SUM
100 FORMAT (6I)
101 FORMAT (F10.5) END
D
*:100:MODIFY.
Z(16D
100 FORMAT (16)
:10:+2MODIFY.
Z, N, 1D
 DO 20 I = 1, N, 1

FIG. 5. The example of Figure 1 redone. The lines paired with braces are the
editing characters in a line edit (above) and the characters typed out during the

edit (below).

16/19

The italicized characters in the command above are the ones
supplied by the user. The “/” is the delimiter for this substitution;
the delimiter is taken to be the first nonblank character after the
initial “S”, and it terminates both new and old strings. If command
completion had been turned off, the command would have ap-
peared as

S/DAY/TIME/
Figure 6 illustrates the edits which were performed in Figure 4

with the line edit as they might be done with SUBSTITUTE.

The substitution may be done for the text in a number of lines

in the obvious way. Thus
1,$SUBSTITUTE /+/ FOR /-/

changes every “-” in the main text buffer to a “+”. A number of
options may also be specified: They take the form

:(option)

*PRINT.
BUSIE OLD FOOLE, UNRULY SUNNE
* SUBSTITUTE // FOR /E/
* SUBSTITUTE /Y/ FOR /I/
* SUBSTITUTE /N/ FOR /NN/
*PRINT.
BUSY OLD FOOL, UNRULY SUN
*.+lPRINT.
WHY DO YOU THUS,
* SUBSTITUTE /ST TH/ FOR /Y/
*PRINT.
WHY DOST THOU THUS,
*.+lPRINT.
THRU WINDOWS AND THRU CURTAINS CALL ON US?
* SUBSTITUTE /THROUGH/ FOR /THRU/
*SUBSTITUTE /WES,/ FOR /WS/
* SUBSTITUTE ,/NES/ FOR /NS/
* PRINT.
THROUGH WINDOWES, AND THROUGH CURTAINES CALL ON US?

FIG. 6. Examples of substitution

Option Effect
:W Display each substitution before making it and wait for the

user to accept or reject it.
:L Display each substitution after making it.
: (decimal number) Terminate the command after the specified number of sub-

stitutions have been made.
FIG. 7. Options for the SUBSTITUTE command

17/19

and come immediately after the initial “S”. Because of this conven-
tion, “:” may not be used as a delimiter. The most important op-
tions are listed in Figure 7. For example,

1,$SUBSTITUTE : I/ALPHA/ FOR /BETA/

will change the first occurrence of “BETA” in the text buffer to
“ALPHA”.

String Buffers
Although QED is not a programming language, it does have one

feature which makes it possible, among other things, to write sim-
ple programs in it, and that is the 36 string buffers, identified by
the digits 0 through 9 and the letters A through Z. Each string
buffer can be loaded with an arbitrary string of characters, either
from specified lines of main text buffer or from teletype input. The
buffer can be called by the two characters Bn where n is a letter or
digit. The editor then behaves exactly as though the characters in
the buffer were being typed in on the teletype.

This fact has a number of implications. First of all, it permits
the user to insert a frequently used phrase in the text by typing just
two characters. Secondly, it permits him to move around sections
of his text by loading them into string buffers and inserting the
buffers at the desired points. To facilitate this operation, a com-
mand is available which loads a section of the text buffer into a
string buffer and deletes it from the text buffer.

Thirdly, it is possible to put frequently used commands into
string buffers. The existence of the escape character, V, which
causes the next character to be taken literally no matter what it is,
allows control characters such as A to appear in buffers. In particu-
lar, it allows calls on other buffers to appear in a buffer, and the
convention that a call on the buffer itself is taken as a loop com-
mand permits simple functions to be performed repeatedly. For
example, if the string

.+M.CSSSDBA
is put into buffer A, then a call on this buffer in command mode
will cause the second, third, and fourth characters to be removed
from every line in the buffer following the current one.

The possibility of extending this elementary program-writing
capability in QED has been seriously considered. The most obvious
addition is some kind of conditional facility, and a pattern-
matching feature similar to the one in SNOBOL [5] has also received

18/19

attention. The tentative conclusion has been that such features
would be of marginal utility, since small programs can readily be
written in SNOBOL or other string-processing languages to accom-
plish repetitive editing operations.

Several of the numbered buffers are automatically loaded by
QED under certain conditions. In particular, the argument of a
search is put into buffer 0, any block of text deleted by a DELETE
or CHANGE is put into buffer 1 (unless it is too big), as is the text
altered by an EDIT or SUBSTITUTE command. This allows an erro-
neous editing operation to be undone with a small amount of work.
Finally, the new and old strings in a SUBSTITUTE command are put
into buffers 2 and 3.

Re-editing
It is possible to regard the commands given to QED during an

editing session as text which the system can be told to store. At a
later time this text can be retrieved and fed back to QED as com-
mands. In this way it is possible to maintain several slightly differ-
ent versions of a body of text without using up a great deal of stor-
age space, simply by keeping one copy of the text and some small
files containing editing commands which create the various ver-
sions from the single standard one. In addition to the saving in
space, there is the further advantage that changes in the text which
are common to all versions need be made only once. Furthermore,
since the commands are simply text, they can themselves be modi-
fied using QED before they are used to perform the edit. This is
sometimes a good way of correcting errors in editing.

Another use for saved commands is in combining several edits
into a single one in a normalized form in which the commands are
reduced to INSERT, DELETE, and CHANGE and ordered by the abso-
lute line numbers of the lines of text affected. This combination
and normalization is not a trivial operation, since it is not in gen-
eral true that QED commands commute, but it is possible, and a
program to accomplish it has been designed. The result is a com-
plete and easily referenced record of all the changes made to a
body of text over what may be a long period of time.

19/19

Conclusion
We have now considered in some detail all of the significant

features which are present in one online editor. QED has been used
extensively for about two and a half years, and in its present form
reflects the judgment of the group which developed the Berkeley
system as to the desirable characteristics of an online teletype text
editor. The primary emphasis throughout the design has been on
accommodating the system to the needs of the users, both novices
and experts. The addressing devices have proved extremely con-
venient to use on a wide variety of text. These and the line edit are
the facilities which attract the most attention, but many other as-
pects of the editor are of importance to the user, even though he
may not be consciously aware of them. Many small details
throughout the system have been arranged to permit smooth and
rapid operation.

Acknowledgments. The basic framework of QED was designed

and the program written by Mr. Deutsch. Many people have con-
tributed suggestions for its improvement; we are especially in-
debted to M. W. Pirtle and R. Morris in this respect.

RECEIVED AUGUST, 1966; REVISED AUGUST, 1967

References
1. CRISMAN, P. A. (Ed.). The Compatible Time-Sharing System: A Program-

mer’s Guide, 2nd ed. MIT Press, Cambridge, Mass., 1965, Section
AH.9.01.

2. ARANDA, S. M. Q-32 Time-sharing system user’s guide, executive service:
context editing (EDTXT). SDC-TM-2708/204/ 00, Sys. Devel. Corp., Santa
Monica, Calif., Mar. 1966.

3. LAMPSON, B. W., LICHTENBERGER, W. W., AND PIRTLE, M. W. A user ma-
chine in a time-sharing system. Proc. IEEE 54, 12 (Dec. 1966), 1766-1774.

4. ANGLUIN, D. C., AND DEUTSCH, L. P. Reference manual: QED Time-
sharing editor. Project Genie Doc. R-15, U. of California, Berkeley, Calif.,
Jan. 1967.

5. FARBER, D. J., GRISWOLD, R. E., AND POLONSKY, I. P. The SNOBOL3 pro-
gramming language. Bell Sys. Tech. J. 45, 6 (July 1966), 845-944.

6. MURPHY, D. TECO. Memorandum, Bolt, Beranek and Newman, Cam-
bridge, Mass. (Nov. 1966).

