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Abstract— This paper describes the design of the computer seen by a machine-language programmer in a time-
sharing system developed at the University of California at Berkeley. Some of the instructions in this machine are
executed by the hardware, and some are implemented by software. The user, however, thinks of them all as part of
his machine, a machine having extensive and unusual capabilities, many of which might be part of the hardware of
a (considerably more expensive) computer.

Among the important features of the machine are the arithmetic and string manipulation instructions, the very
general memory allocation and configuration mechanism, and the multiple processes which can be created by the
program. Facilities are provided for communication among these processes and for the control of exceptional
conditions.

The input-output system is capable of handling all of the peripheral equipment in a uniform and convenient
manner through files having symbolic names. Programs can access files belonging to a number of people, but each
person can protect his own files from unauthorized access by others.

Some mention is made at various points of the techniques of implementation, but the main emphasis is on the
appearance of the user's machine.

INTRODUCTION

A characteristic of a time-sharing system is that the computer seen by the user programming in
machine language differs from that on which the system is implemented [1], [2], [6], [10], [11]. In
fact, the user machine is defined by the combination of the timesharing hardware running in user
mode and the software which controls input-output, deals with illegal actions which may be taken
by a user's program, and provides various other services. If the hardware is arranged in such a
way that calls on the system have the same form as the hardware instructions of the machine [7],
then the distinction becomes irrelevant to the user; he simply programs a machine with an unusual
and powerful instruction set which relieves him of many of the problems of conventional machine-
language programming [8], [9].

In a time-sharing system that has been developed by and for the use of members of Project Genie
at the University of California at Berkeley [7], the user machine has a number of interesting
characteristics. The computer in this system is an SDS 930, a 24 bit, fixed-point machine with one
index register, multi-level indirect addressing, a 14 bit address field, and 32 thousand words of
1.75 µs memory in two independent modules. Figure 1 shows the basic configuration of

                                               
1 This paper was published in Proceedings of the IEEE, vol. 54, no. 12, December 1966, pp 1766-1774. This
version was produced by OCR from a scanned copy of the published paper; it may have errors.
2 Manuscript received July 12, 966, revised August 29, 1966. The work for this paper was supported in part by the
Advanced Research Projects Agency, Department of Defense, Contract SD-155.
3 The authors are with the University of California, Berkeley, Calif.



A User Machine in a Time-Sharing System 2

equipment. The memory is interleaved between the two modules so that processing and drum
transfers may occur simultaneously. A detailed description of the various hardware modifications
of the computer and their implications for the performance of the overall system has been given in
a previous paper [7].

Briefly, these modifications include the addition of monitor and user modes in which, for user
mode, the execution of a class of instructions is prevented and replaced by a trap to a system
routine. The protection from unauthorized access to memory has been subsumed in an address
mapping scheme: both the 16 384 words addressable by a user program (logical addresses) and
the 32 768 words of actual core memory (physical addresses) have been divided into 2048-word
pages. A set of eight six-bit hardware registers defines a map from the logical address space to the
real memory by specifying the real page that is to correspond to each of the user's logical pages.
Implicit in this scheme is the capability of marking each of the user's pages as unassigned or read-
only, so that any attempt to access such a page improperly will result in a trap.
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Fig. 1. Configuration of equipment.

All memory references in user mode are mapped. In monitor mode, all memory references are
normally absolute. It is possible, however, with any instruction in monitor mode, or even within a
chain of indirect addressing, to specify use of the user map. Furthermore, in monitor mode the top
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4096 words are mapped through two additional registers called the monitor map. The mapping
process is illustrated in Fig. 2.
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Fig. 2. The hardware memory map. (a) Relation between virtual and real memory for a typical map. (b)
Construction of a real memory address.

Another significant hardware modification is the mechanism for going between modes. Once the
machine is in user mode, it can get to monitor mode under three circumstances

1) if a hardware interrupt occurs,

2) if a trap is generated by the user program as outlined, and,
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3) if an instruction with a particular configuration of two bits is executed. Such an instruction
is called a system programmed operator (SYSPOP).

In case 3), the six-bit operation field is used to select one of 64 locations in absolute core. The
current address of the instruction is put into absolute location zero as a subroutine link, the
indirect address bit of this link word is set, and another bit is set, marking the memory location in
the link word as having come from user-mapped memory. The system routine thus invoked may
take a parameter from the word addressed by the SYSPOP, since its address field is not
interpreted by the hardware. The routine will address the parameter indirectly through location
zero and, because of the bit marking the contents of location zero as having come from user
mode, the user map will be applied to the remainder of the address indirection. All calls on the
system that are not inadvertent are made in this way.

A monitor mode program gets into user mode by transferring to an address with mapping
specified. This means, among other things, that a SYSPOP can return to the user program simply
by branching indirect through location zero.

As the above discussion has perhaps indicated, the mode-changing arrangements are very clean
and permit rapid and natural transfers of control between user and system programs. Advantage
has been taken of this fact to create a rather grandiose machine for the user. Its features are the
subject of this paper.

BASIC FEATURES OF THE MACHINE

A user in the Berkeley time-sharing system, working at what he thinks of as the hardware
language level, has at his disposal a machine with a configuration and capability that can be
conveniently controlled by the execution of machine instruction sequences. Its simplest
configuration is very similar to that of a standard medium-sized computer. In this configuration,
the machine possesses the standard 930 complement of arithmetic and logic instructions and, in
addition, a set of software interpreted monitor and executive instructions. The latter instructions,
which will be discussed more fully in the following, do rather complex input-output of many
different kinds, perform many frequently used table lookup and string processing functions,
implement floating point operations, and provide for the creation of more complex machine
configurations. Some examples of the instructions available are:

1) Load A, B, or X (index) registers from memory or store any or the registers. Indexing and
indirect ad-dressing are available on these and almost all other instructions. Double word
load and store are also available.

2) The normal complement of fixed-point arithmetic and logic operations.

3) Skips on various arithmetic and logic conditions.

4) Floating point arithmetic and input-output. The latter is in free format or in the equivalent
of Fortran E or F format.

5) Input a character from a teletype or write a block of arbitrary length on a drum file.
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6) Look up a string in a hash-coded table and obtain its position in the table.

7) Create a new process and start it running concurrently with the present one at a specified
point.

8) Redefine the memory of the machine to include a portion of that which is also being used
by another program.

It should be emphasized that, although many of these instructions are software interpreted, their
format is identical to the standard machine instruction format, with the exception of the one bit
which specifies a system interpreted instruction. Since the system interpretation of these in-
structions is completely invisible to the machine user, and since these instructions do have the
standard machine instruction format, the user and his program make no distinction between
hardware and software interpreted instructions.

Some of the possible 192 operation codes are not legal in the user machine. Included in this
category are those hardware instructions which would halt the machine or interfere with the input-
output if allowed to execute, and those software interpreted instructions which attempt to do
things which are forbidden to the program. Attempted execution of one of these instructions will
result in an illegal instruction violation. The effect of an illegal instruction violation is described
later.

Memory Configuration

The memory size and organization of the machine is specified by an appropriate sequence of
instructions. For example, the user may specify a machine that has 6K of memory with addresses
from 0 to 137778: alternatively, he may specify that the 6K should include addresses 0 to 37778,
l40008 to l77778, and 340008 to 377778. The user may also specify the size and configuration of
the machine's secondary storage and, to a considerable extent, the structure of its input-output
system. A full discussion of this capability will be deferred to a later section.

The next few paragraphs discuss the mechanism by which the user's program may specify its
memory size and organization. This mechanism, known as the process map to distinguish it from
the hardware memory address mapping, uses a (software) mapping register consisting of eight 6-
bit bytes, one byte for each of the eight 2K blocks addressable by the 14 bit address field of an
instruction. Each of these bytes either is 0 or addresses one of the 63 words in a table called the
private memory table (PMT). Each user has his own private memory table. An entry in this table
provides information about a particular 2K block of memory. The block may be either local to the
user or it may be shared. If the bock is local, the entry gives information about whether it is
eurrently in core or on the drum. This information is important to the system but need not concern
the user. If the block is shared, its PMT entry points to an entry in another table called the shared
memory table (SMT). Entries in this table describe blocks of memory that are shared by several
users. Such blocks may contain invariant programs and constants, in which case they will be
marked as read-only, or they may contain arbitrary data which is being processed by programs
belonging to two different users.
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Fig 3. Layout of virtual memory for a typical process.

A possible arrangement of logical or virtual memory for a process is shown in Fig. 3. The nature
of each page has been noted in the picture of the virtual memory this information can also be
obtained by taking the corresponding byte of the map and looking at the PMT entry specified by
that byte. The figure shows a large amount of shared memory, which suggests that the process
might be a compilation, sharing the code for the compiler with other processes translating
programs written in the same source language. Virtual pages one and two might hold tables and
temporary storage which are unique to each separate compilation. Note that, although the
flexibility of the map allows any block of code or data to appear anywhere in the virtual memory,
it is certainly not true that a program can run regardless of which pages it is in. In particular, if it
contains references to itself, such as branch instructions, then it must run in the same virtual pages
into which it was loaded.

Two instructions are provided which permit the user to read and modify his process map. The
ability to read the process mapping registers permits the user to obtain the current memory
assignment, and the ability to write the registers permits him to reassign memory in any way that
suits his fancy. The system naturally checks each new map as it is established to ensure that the
process is not attempting to obtain unauthorized access to memory that does not belong to it.

When the user's process is initiated, it is assigned only enough memory to contain the program
data as initially loaded. For instance, if the program and constants occupy 30008 words, two
blocks, say blocks 0 and 1, will be assigned. At this point, the first two bytes of the process
mapping register will be nonzero: the others will be zero. When the program runs, it may address
memory outside of the first 4K. If it does, and if the user has specified a machine size larger than
4K, a new block of memory' will be assigned to him which makes the formerly illegal reference
legal. In this way, the user' 5 process may obtain more memory. In fact, it may easily obtain more
than 16K of memory simply by addressing 16K, reading and preserving the process mapping
register, setting it with some of the bytes cleared to zero, and grabbing some more memory. Of
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course, only 16K can be addressed at one time; this is a limitation imposed by the address field of
the machine.

There is an instruction that allows a process to specify the maximum amount of memory that it is
allowed to have. If it attempts to obtain more than this amount, a memory violation will occur. A
memory violation can also be caused by attempts to transfer into or indirect through unassigned
memory, or to store into read-only memory. The effect of this violation is similar to the effect of a
legal instruction violation and will be discussed.

The facilities just described are entirely sufficient for programs which need to reorganize the
machine's memory solely for internal purposes. In many cases, however, the program wishes to
obtain access to memory blocks which have been created by the system or by other programs. For
example, there may be a package of mathematical and utility routines in the system which the
program would like to use. To accommodate this requirement, there is an instruction which
establishes a relationship between a name and a certain process mapping function. This instruction
moves the PMT entries for the blocks addressed by the specified process mapping function into
the shared memory table so that they are generally accessible to all users. Once this
correspondence has been established, there is another instruction which allows a different user to
deliver the name and obtain in return the associated process map. This instruction will, if
necessary, make new entries in the second user's PMT. Various subsystems and programs of
general interest have names permanently assigned to them by the system.

4, 1, 2, 8, 6, 0, 9, 0

PMT 1

1 M3
2 M4
3 M5
4 SMT1
5 SMT4
6 SMT2
7 M12
8 SMT6
9 SMT3
10 0
. . .

4, 1, 2, 0, 0, 3, 5, 0 4, 0, 0, 8, 6, 7, 1, 2
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1, 3, 4, 0, 0, 5, 8, 0
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2.2
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1.1
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4 M8
5 M9
6 SMT2
7 M13
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9 M14
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. . .

SMT

1 M1
2 M16
3 M2
4 M10
5 M11
6 M6
. . .

Fig. 4. Process and memory configuration for two users. (The processes are numbered for each user and
are represented by their process mapping registers. Memory blocks are identified by drum

addresses, which are written M1, M2, ...)
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The user machine thus makes it possible for a number of processes belonging to independent users
to run with memory which is an arbitrary combination of blocks local to each individual process,
blocks shared between several processes, and blocks permanently available in the system. A
complex configuration is sketched in Fig. 4. Process 1.1 was shown in more detail in Fig.3. Each
box represents a process, and the numbers within represent the eight map bytes. The arrows
between processes show the process hierarchy, which is discussed in the next section. Note that
the PMT's belong to the users, not to the processes.

From the above discussion, it is apparent that the user can manipulate the machine memory
configuration to perform simple memory overlays, to change data bases, or to perform other more
complex tasks requiring memory reconfiguration. For example, the use of common routines is
greatly facilitated, since it is necessary only to adjust the process map so that 1) memory
references internal and external to the common routine are correct, and 2) the memory area in
which the routine resides is read-only. In the simplest case, in which the common routine and the
data base fit into 16K of memory, the map is initially established and remains static throughout the
execution of the routine. In other cases where the routine and data base do not fit into 16K, or
where several common routines are concurrently employed, it may be necessary to make frequent
adjustment to the map during execution.

Multiple Processes

An important feature of the user machine allows the user program, which in the current context
will be referred to as the controlling process, to establish one or more subsidiary processes. With
a few minor exceptions, to be discussed, each subsidiary process has the same status as the
controlling process. Thus, it may in turn establish a subsidiary process. It is therefore apparent
that the user machine is in fact a multi-processing machine. The original suggestion which gave
rise to this capability was made by Conway [3]; more recently the Multics system has included a
multi-process capability [4], [5], [13].

A process is the logical environment for the execution of a program, as contrasted to the physical
environment, which is a hardware processor. It is defined by the information which is required for
the program to run; this information is called the state vector. To create a new process, a given
process executes an instruction that has arguments specifying the state vector of the new process.
This state vector includes the program counter, the central registers, and the process map. The
new process may have a memory configuration which is the same as, or completely different from,
that of the originating process. The only constraint placed on this memory specification is that the
total memory available to the multi-process system is limited to 128K by the process mapping
mechanism, which is common to all processes. Each user, of course, has his own 128K.

This facility was put into the system so that the system could control the user processes. It is also
of direct value, however, for many user processes. The most obvious examples are input-output
buffering routines, which can operate independently of the user's main program, communicating
with it through memory and with interrupts (see the following). Whether the operation being
buffered is large volume output to a disc or teletype requests for information about the progress
of a running program, the degree of flexibility afforded by multiple processes far exceeds anything
which could have been built into the input-output system. Furthermore, the overhead is very low:
an additional process requires about 15 words of core, and process switching takes about 1 ms
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under favorable conditions. There are numerous other examples of the value of multiple
processes; most, unfortunately, are too complex to be briefly explained.

A process may create a number of subsidiary processes, each of which is independent of the
others and equivalent to them from the point of view of the originating process. Figure 4 shows
two simple multi-process structures, one for each of two users. Note that each process has
associated with it pointers to its controlling process and to one of its subsidiary processes. When a
process has two immediate descendants, as in the case of processes 1.2 and 1.3, they are chained
together on a ring. Thus, three pointers, up, down, and ring, suffice to define the process structure
completely. The up pointers are, of course, redundant, but are convenient for the implementation.
The process is identified by a process number which is returned by' the system when it is created.
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Fig. 5. Hierarchy of processes

A complex structure such as that in Fig. 5 may result from the creation of a number of subsidiary
processes. The processes in Fig. 5 have been numbered arbitrarily to allow a clear description of
the way in which the pointers are arranged. Note that the user need not be aware of these
pointers: they are shown here to clarify the manner in which the multiple process mechanism is
implemented.
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A process may destroy one of its subsidiary processes by executing the appropriate instruction.
For obvious reasons this operation is not legal if the process being destroyed it-self has subsidiary
processes. It is possible to find out what processes are subsidiary to any given one: this permits a
process to destroy an entire tree of sub-processes by reading the tree from the top down and
destroying it from the bottom up.

The operations of creating and destroying processes are entirely separate from those of starting
and stopping their execution, for which two more operations are provided. A process whose
execution has been stopped is said to be suspended.

To assure that these various processes can effectively work together on a common task, several
means of inter-process communication exist. The first allows the controlling process to obtain the
current status of each of its subsidiary processes. This status information, which is read into a
table by the execution of the appropriate system instruction, includes the current state vector and
operating status. The operating status of any process may be

1) running,
2) dismissed for input-output,
3) terminated for memory violation,
4) terminated for illegal instruction violation, or
5) terminated by the process itself.

A second instruction allows the controlling process to become dormant until one of its subsidiary
processes terminates. Termination can occur in the following three ways:

1) because of a memory violation,
2) because of an illegal instruction violation,
3) because of self-termination.

Interactions described previously provide no method by which a process can attract the attention
of another process that is pursuing an independent course. This can be done with a program
interrupt. Associated with each process is a 20-bit interrupt mask. If a mask bit is set, the process
may, under certain conditions (to be described in the following), be interrupted: i.e., a transfer to a
fixed address will be simulated. The program will presumably have at this fixed address the
location of a subroutine capable of dealing with the interrupt and returning to the interrupted
computation afterwards. The mechanism is functionally' almost identical to many hardware
interrupt systems.

A process may cause an interrupt by delivering the number of the interrupt to the appropriate
instruction. The process causing the interrupt continues undisturbed, but the nearest process
which is either on the same level as the one causing the interrupt or above it in the hierarchy of
processes, and which has the appropriate interrupt armed, will be interrupted. This mechanism
provides a very flexible way for processes to interact with each other without wasting any time in
the testing of flags or similar frivolous activities.

Interrupts may be caused not only by the explicit action of processes, but also by the occurrence
of several special conditions. The occurrence of a memory violation, attempted execution of an
illegal instruction, an unusual input-output condition, the termination of a subsidiary process, or
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the intervention of a user at a console (by pushing a reserved button) all may cause unique
interrupts (if they have been previously armed). In this way, a process may be notified
conveniently of any unusual conditions associated with other processes, the process itself, or a
console user.

The memory assignment algorithm discussed previously is slightly modified in the presence of
multiple processes. When a process is activated, one of three options may be specified:

1) Assign new memory to the process entirely independently of the controlling process.

2) Assign no new memory to the process. Any attempt to obtain new memory will cause a
memory violation.

3) If the process attempts to obtain new memory, scan upward through the process hierarchy
until the topmost process is reached. If at any time during this scan a process is found for
which the address causing the trap is legal, propagate the memory assigned to it down
through the hierarchy to the process causing the trap.

Option 3) permits a process to be started with a subset of memory and later to reacquire some of
the memory which was not given to it initially. This feature is important because the amount of
memory assigned to a process influences the operating efficiency of the system and thus the speed
with which it will be able to respond to teletypes 0 other real-time devices.

THE INPUT-OUTPUT SYSTEM

The user machine has a straightforward but unconventional set of input-output instructions. The
primary emphasis in the design of these instructions has been to make all input-output devices
interface identically with program and to provide as much flexibility in this common interface as
possible. Two advantages result from this uniformity: it becomes natural to write programs that
are essentially independent of the environment in which they operate, and the implementation of
the system is greatly simplified. To the user the former point is, of course, the important one.

It has been common, for example, for programs written to be controlled from a teletype to be
driven instead from a file on, let us say, the drum. A command exists which permits the recognizer
for the system command language and all of the subsystems to be driven in this way. This device
is particularly useful for repetitive sequences of program assemblies and for background jobs that
are run in the absence of the user. Output which normally goes to the teletype is similarly diverted
to user files. Another application of the uniformity of the file system is demonstrated in some of
the subsystems, notably the assembler and the various compilers. The subsystem may request the
user to specify where he wishes the program listing to be placed. The user may choose anything
from paper tape to drum to his own teletype. In the absence of file uniformity each subsystem
would require a separate block of code for each possibility. In fact, however, the same input-
output in instructions are used for all cases.

The input-output instructions communicate with files. The system in turn associates files with the
various physical devices. Programs, for the most part, do not have to account for the peculiarities
of the various actual devices. Since devices differ widely in characteristics and behavior, the flexi-
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bility of the operations available on files is clearly critical. They must range from single-character
input to the output of thousands of words.

A file is opened by giving its name as an argument to the appropriate instruction. Programs thus
refer to all files symbolically, leaving the details of physical location and organization to the
system. If authorized, a program may refer to files belonging to other users by supplying the name
of the other user as well as the file name. The owner of a file determines who is authorized to
access it. The reader may compare this file naming mechanism with a more sophisticated one [12],
bearing in mind the fact that file names can be of any length and can be manipulated (as strings of
characters) by the program.

Access to files is, in general, either sequential or random in nature. Some devices (like a
keyboard-display or a card reader) are purely sequential, while others (like a disk) may be either
sequentially or randomly accessed. There are accordingly two major I/O interfaces to deal with
these different qualities. The interface used in conjunction with a given file depends on whether
the file was declared to be a random or a sequential file. The two major interfaces are each broken
down into other interfaces, primarily for reasons of implementation. Although the distinction
between sequential and random files is great, the subinterfaces are not especially visible to the
user.

Sequential Files

The three instructions CIO (character input-output}, WIO (word input-output), and BIO (block
input-output), are used to communicate with a sequential file. Each instruction takes as an
operand a file number. This number is given to the program when it opens a file. At the time of
opening a file it must be specified whether the file is to be read from or written on to. Whether
any given device associated with the file is character-oriented or word-oriented is unimportant:
the system takes care of all necessary character-to-word assembly or word-to-character
disassembly.

There are actually three separate, full-duplex physical interfaces to devices in the sequential file
mechanism. Generally, these interfaces are invisible to programs. They exist, of course, for
reasons of system efficiency and also because of the way in which some devices are used. The
interfaces are:

1) character-by-character (basically for low-speed, character-oriented devices used for man-
machine interaction),

2) buffered block I/O (for medium-speed I/O applications),

3) block I/O directly from user core (for high-speed situations).

It should be pointed out that there is no particular relation between these interfaces and the three
instructions CIO, WIO, and BIO. The interface used in a given situation is a function of the
device involved and, sometimes, of the volume of data to be transmitted, not of the instruction.
Any interface may be driven by any instruction.

Of the three subinterfaces under discussion, the last two are straightforward. The character-by-
character interface is, however, somewhat different and deserves some elaboration. Devices
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associated with this interface are generally (but not necessarily) used for man-machine interaction.
Consider the case of a person communicating with a program by means of a keyboard-display (or
a teletype). He types on the keyboard and the information is transmitted to the computer. The
program may wish to make an immediate response on the display screen. In many cases this
response will consist of an echo of the same character, so that the user has the feeling of typing
directly onto the screen (or onto the teleprinter).

OUTPUT INTERRUPT
ROUTINE

ECHO
TABLE

INPUT INTERRUPT
ROUTINE

USER’S
PROGRAM

INPUT BUFFER

DEVICE

OUTPUT BUFFER

Fig. 6. The character-oriented interface.

So that input-output can be carried out when the program is not actually in main memory, the
character-by-character input interface permits programs a choice of a number of echo tables. It
further permits programs a choice of grade of service by permitting them to specify whether a
given character is an attention (or break) character. Thus, for example, the program may specify
that each character typed is to be echoed immediately and that all control characters are to result
in activation of the program regardless of the number of characters in the input buffer. Alterna-
tively, the program may specify that no characters are echoed and every character is a break
character. By changing the specification the program can obtain an appropriate (and varying)
grade of service without putting undue load on the system. Figure 6 shows the components of the
character-by-character interface; responsibility for its operation is split between the interrupt
routine called when the device signals for attention and the routine which processes the user’s I/O
request.

The advantage of the full-duplex, character-by-character mode of operation is considerable. The
character-by-character capability means that the user can interact with his program in the smallest
possible unit, the character. Furthermore, the full-duplex capability permits, among other things

1) the program to substitute characters or strings of characters as echoes for those received,

2) the keyboard and display to be used simultaneously (as, for example, permitting a
character typed on a keyboard to pre-empt the operation of a process. In the case of
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typing information in during the output of information, a simple algorithm prevents the
random admixture of characters which might otherwise result), and

3) the ready detection of transmission errors.

Instructions are included to enable the state of both input and output buffers to be sensed and
perhaps cleared (discarding unwanted output or input). Of course, it is possible for a program to
use any number of authorized physical devices; in particular, this includes those devices used as
remote consoles. A mechanism is provided to permit output which is directed to a given device to
be copied on all other devices that are output linked to it (and similarly for input). This is useful
when communication among users is desired and in numerous other situations.

The sequential file has a structure somewhat similar to that of an ordinary magtape file. It consists
of a sequence of logical records of arbitrary length and number. On some devices, such as a card
reader or the teletype, a file may have only one logical record. The full generality is available for
drum files, which are the ones most commonly used. The logical record is to be contrasted with
the variable length physical record of magtape or the fixed length record of a card. Instructions
are provided to insert or delete logical records and increase or decrease them in length. Other in-
structions permit the file to be “positioned” almost instantaneously to a specified logical record.
This gives the sequential file greater flexibility than one which is completely unaddressable. This
flexibility is only possible, of course, because the file is on a random-access device and the
sequential structure is maintained by pointers. The implementation is discussed in the following.

When reading a sequential file, CIO and WIO return certain unusual data configurations when
they encounter an end of record or end of file, and BIO terminates transmission on either of the
conditions and returns the address of the last word transmitted. In addition, certain flag bits are
set by the unusual conditions, and an interrupt may be caused if it has been armed.

EOR/EOF

1
1
1  1

Fig. 7. Index blocks and pointers to data blocks.

The implementation of the sequential file scheme for auxiliary storage is illustrated in Fig. 7.
Information is written on the drum in 256-word physical records. The locations of these records
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are kept track of in 64-word index blocks containing pointers to the data blocks. For the file
shown, the first logical record is more than 256 words long but ends in the second 256-word
block. The second logical record fits in the third 256-word block and the third logical record— in
the 4th data block— is followed by an end of file. If a file requires more than 64 index words,
additional index blocks are chained together, both forward and backward. Thus, in order to access
information in the file it is necessary only to know the location of the first index block. It may be
worthwhile to point out that all users share the same drum. Since the system has complete control
over the allocation of space on the drum, there is no possibility of undesired interaction among
users.

72 BITS
1  1  0  1  0  1  0  0  1  0  1  0  0  1  0  0  0  0  1  0  0
1  0  0  0  1  0  1  0  0  0  1  0  1  1  1  0  1  0  1  1  0
0  0  1  0  1  1  0  1  1  1  0  1  1  1  1  0  1  1  1  1  0
1  1  0  0  0  0  0  1  1  1  1  1  1  0  0  1  0  1  0  0  0
1  0  0  0  0  1  1  0  0  0  1  0  0  1  0  0  0  1  1  1  1
1  0  1  0  0  0  1  1  0  0  0  1  1  0  1  1  1  0  1  0  1
0  0  1  1  0  1  0  0  1  1  0  1  0  0  0  0  1  0  0  1  0
1  1  0  0  1  0  1  0  0  0  0  0  0  1  0  0  0  1  0  0  1

64 WORDS

Fig. 8. Bit table for allocation of space on the drum.

Available space for new data blocks or index blocks is kept track of by a bit table, illustrated in
Fig. 8. In the figure, each column represents one of the 72 physical bands on the drum allocated
for the storage of file information. Each row represents one of the 64 256-word sectors around a
band. Each bit in the table thus represents one of the 4608 data blocks available. The bits are set
when a block is in use and cleared when the block becomes available. Thus, if a new data block is
required, the system has only to read the physical position of the drum, use this position to index
in the table, and search a row for the appearance of a 0. The column in which a 0 is found
indicates the physical track on which a block is available. Because of the way the row was chosen,
this block is immediately accessible, This scheme has two advantages over its alternative, which is
to chain unused blocks together;

1) It is easy to find a block in an optimum position, using the algorithm just described.

2) No drum operations are required when a new block is needed or an old one is to be
released.

It may be preferable to assign the new block so that it becomes accessible immediately after the
block last assigned for the file. This scheme will speed up subsequent reading of the file.

Random Files

Auxiliary storage files can also be treated as extensions of core memory rather than as sequential
devices. Such files are called random files. A random file differs from a sequential file in that there
is no logical record structure to the file and that information is extracted from or written into the
random file by addressing a specific word or block of words. It may be opened like a sequential
file; the only difference is that it need not be specified as an output or an input file.
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Four instructions are used to input and output words and blocks of words on a random file. To
permit the random file to look even more like core memory, an instruction enables one of the
currently open random files to be specified as the secondary memory file. Two instructions, LAS
(load A from secondary memory) and SAS (store A in secondary memory), act like ordinary load
and store instructions with one level of indirect addressing (see Fig. 9) except, of course, that the
data are in a random file instead of in core memory.

Main Memory

LDA* ADDR

STA* ADDR

Secondary Memory

LAS ADDR

SAS ADDR

(a)

Address

600

1450

16345

Instruction

LAS 1450

16345

1234567

(b)

Effect: 1234567 →  A

Fig. 9. Load and store form main and secondary memory. (a) Instructions. (b) Addressing.

Random files are implemented like sequential files except that end of record indicators are not
meaningful. Although as many index blocks are used up as required by the size of a random file,
only those data blocks that actually contain information will be attached to a random file. As new
locations are accessed, new data blocks are attached.

Subroutine Files

Whereas it makes little sense to associate, say, a card reader with a random file, a sequential file
can be associated with any physical device in the system. In addition, a sequential file may be
associated with a subroutine. Such a file is called a suhroutin efile, and the subroutine may thus be
thought of as a “nonphysical” device. The subroutine file is defined by the address of a subroutine
together with information indicating whether it is an input or an output file and whether it is word
or character oriented. An input operation from a subroutine file causes the subroutine to be called.
When it returns, the contents of the A register is taken to be the input requested.
Correspondingly, an output operation causes the subroutine to be called with the word or
character being output in A. The subroutine is completely unrestricted in the kinds of processing it
can do. It may do further input or output and any amount of computation. It may even call itself if
it preserves the old return address.
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Recall that for sequential files the system transforms all information supplied by the user to the
format required by the particular file; hence the requirement that the user, in opening a subroutine
file, must specify whether the file is to be character or word oriented. The system will thereafter
do all the necessary packing and unpacking.

Subroutine files are the logical end-product of a desire to decouple a program from its
environment. Since they can do arbitrary computations, they can provide buffers of any desired
complexity between the assumptions a program has made about its environment and the true state
of things. In fact, they make it logically unnecessary to provide an identical interface for all the
input-output devices attached to the system; if uniformity did not exist, it could be simulated with
the appropriate subroutine files. Considerations of convenience and efficiency, of course, militate
against such an arrangement, but it suggests the power inherent in the subroutine file machinery.

SUMMARY

The user machine described was designed to be a flexible foundation for development and
experimentation in man-machine systems. The user has been given the capability to establish
configurations of multiple processes; and the processes have the ability to communicate
conveniently with each other, with central files, and with peripheral devices. A given user may, of
course, wish only to use a subsystem of the general system (e.g., a compiler or a debugging
routine) for his particular job. In the course of using the subsystem, however, he may become
dissatisfied with it and wish to revise or even rewrite the subsystem. The features of the user
machine not only permit this activity but make it easier.
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